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ABSTRACT 
 
In this paper, we discuss the development and application of an analytical tool for use with 
teachers to help them become aware of how they attend to students’ thinking during discussions. 
Through understanding how one explicitly attends to student thinking, corrective measures for 
improving facilitation of effective classroom discussions can occur. The tool is designed as a 
decision tree, drawing on literature from both science and mathematics education. The application 
of the tool in this paper uses video from elementary pre-service teachers' instruction in an early 
field experience. Utilizing science teaching videos from three teaching teams (Grades K, 2, and 5), 
we demonstrate how the decision tree tool moves beyond an initial teacher question and student 
response to bring attention to how pre-service teachers follow up on students’ responses. Four 
main branches are identified (focusing, funneling, acknowledging, and no response), with smaller 
branches for each. To show the potential of the tool, data is also provided on the frequencies of 
these decision branches from our analysis of the three teaching teams used to develop the tool. 
Limitations of the tool, but also implications for future use are discussed. 
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Introduction 
 

Effective science teaching involves teachers understanding how students are making sense of 
what they are learning (Davis et al., 2020). To do this, teachers must learn to become responsive to 
their students’ needs based on how they are making sense of the phenomenon. A responsive teacher 
knows how to attend to students’ ideas, interpret responses, and respond in a manner that advances 
student learning (Gotwals & Birmingham, 2016; Kang & Anderson, 2015). These aspects of 
responsive teaching are strengthened when a teacher is engaged in the practice of “professional 
noticing” (Sherin et al., 2011; Luna, 2018). Researchers describe the practice of teacher noticing as 
dynamic and consisting of two activities: (1) giving attention to moments of student thinking in an 
instructional setting, and (2) making sense of these moments (Luna, 2018). For these two acts to 
occur, a teacher needs to also consider how they facilitate discussions with students so moments of 
students’ thinking about a particular phenomenon can be brought forward for sense-making (Davis 
et al., 2020; Windschitl et al., 2018).  

To date, much of the research on teacher noticing, and its use in learning to make sense of 
student thinking, has focused on mathematics education and across a range of contexts – in-service 
to pre-service and elementary through secondary (see Sherin et al., 2011 for a comprehensive 
overview). In science education, the concept of teacher noticing has started to gain traction, but it 
“is still a construct ‘under development’ without an established definition” (Chan et al., 2021, p. 2). 
Of the studies in science education that have included specific reference to teacher noticing, more 
attention is given to studying secondary teachers than primary, but there is a balance in 
representation between in-service and pre-service teacher studies (Chan et al., 2021). Since Chan et 
al.’s review, some researchers in science education have started to explore how different practice 
spaces, such as peer rehearsals (Benedict-Chambers et al., 2020) or online simulations (Lottero-
Perdue et al., 2024) can support teacher noticing. Furthermore, there is recent research focusing on 
secondary science and mathematics pre-service teachers learning to professionally notice as they 
facilitate discussions within simulated environments and with a focus on argumentation (Zangori et 
al., 2025).  

What is missing within the literature on teacher noticing are analytic tools that can be used 
with teachers to support attending to students’ thinking in the act of facilitating classroom 
discussion. With the prevalence of approximations of practice (i.e., rehearsals and simulations) in 
teacher preparation programs, having an analytical tool such as the one described in this paper can 
provide critical support for pre-service teachers with learning to explicitly identify strategies for 
interpreting and responding to students and enhance sense-making. Specifically, how are teachers 
framing questions that follow up a student’s response that may help to advance the discussion, 
redirect the discussion, or, in some cases, unintentionally shut down a discussion. Understanding 
how to move a discussion beyond the initial question asked is an important precursor for learning 
how to professionally notice in the act of teaching. The decision tree tool discussed in this paper was 
designed to meet this need. The tool is easily adaptable in various contexts as it uses video of 
classroom practice as the medium for analyzing how the teacher is attending to students’ thinking in 
the discussion. In fact, the Zangori et al. (2025) study employed this analytical tool to analyze the 
secondary mathematics and science pre-service teachers’ communication patterns around 
argumentation. Therefore, the purpose of this paper is to describe the development of the tool and 
illustrate the possible information that can be gleaned about teachers’ attention to students’ thinking. 
To accomplish this goal, 14 teaching videos from three teams of elementary science pre-service 
teachers’ instruction during an early science field experience were used.   

 
Conceptual Framing and Related Literature 
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Based on the evaluation of a 10-year research-based curriculum improvement project, as well 
as work with beginning teachers, Davis and Smithey (2009) outline three areas of focus for the 
development of pre-service elementary science teachers, “a) inquiry-oriented science teaching, b) use 
of science curriculum materials, and c) anticipating and working with student ideas during 
instruction” (p. 745). It is the third area that necessitates pre-service teachers to become aware of 
how they are attending to students’ responses during the act of teaching, so they can begin to work 
towards the more complex practice of professional noticing in the act of teaching.  

 
Professional Noticing 
 

Professional noticing serves as the conceptual framework for the development of the tool 
described in this paper. Professional noticing, or teacher noticing, first gained acceptance in the field 
of mathematics education with the work of Sherin and van Es on teachers watching and discussing 
video of their own classrooms (see Sherin, 2001; 2007; Sherin & van Es, 2005; 2009; van Es & 
Sherin, 2002; 2006). To notice student thinking involves “(a) identifying what is important or 
noteworthy about a classroom situation; (b) making connections between the specifics of classroom 
interactions and the broader principles of teaching and learning they represent; and (c) using what 
one knows about the context to reason about classroom interactions” (van Es & Sherin, 2002, p. 
573). For beginning teachers, however, it can be difficult to navigate the many complex skills of 
professional noticing when there are so many different pedagogical challenges when first learning to 
teach (Amador et al., 2021; Davis et al., 2006). One of these challenges is learning to be in the 
moment and listening to what students are saying to decide how to effectively respond. Levin et al. 
(2009) refer to this act of responding in the moment as attending to students' thinking. This 
pedagogical move requires teachers to listen to what students are saying in response to questions 
asked and be able to think in the moment about how to follow up to probe students’ thinking 
further. This skill of knowing how to follow up is important because it is what offers teachers 
insight into students' thinking and affords them the information needed to learn to develop the 
more complex noticing skills of ‘interpreting’ and ‘responding’ (Jacobs et al., 2010) more effectively. 
It is important to recognize the various influences that make it challenging for pre-service teachers 
to develop these complex noticing skills.  

Research in science education has increasingly examined how noticing operates in the 
context of science teaching, where teachers must attend to both general pedagogical cues and the 
disciplinary dimensions of students' scientific ideas, reasoning, and practices to support their 
scientific sensemaking (Chan et al., 2021; Russ & Luna, 2013). Science learning is dynamic and 
context-dependent, requiring teachers to adapt instruction in response to students' evolving ideas 
(Russ & Luna, 2013). This need for flexibility aligns with research on formative assessment, which 
underscores that effective noticing involves eliciting, interpreting, and using students’ thinking as 
evidence to make real-time instructional adjustments (Black & Wiliam, 2009). 

Noticing in science is influenced by teachers' content knowledge, pedagogical content 
knowledge (PCK), epistemological framing, and teaching experience (Chan et al., 2021). Luna (2018) 
emphasized that noticing in science classrooms requires more than identifying correct answers; it 
demands attention to the disciplinary substance of students’ reasoning, which is often implicit and 
requires interpretation in the moment. Noticing also varies across classroom settings, including 
whole-class discussions, small-group work, and laboratory investigations (Russ & Luna, 2013). 

Despite its importance, novice science teachers often struggle with noticing. Levin et al. 
(2009) found that beginning teachers can attend to student thinking when supported by 
environments emphasizing responsive teaching and sensemaking. However, school contexts focused 
on curriculum coverage and classroom control can undermine these practices. Barnhart and van Es 
(2015) demonstrated that pre-service secondary science teachers who engaged in video-based 
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analysis developed more sophisticated noticing, particularly in attending to student ideas, analyzing 
interactions, and proposing responsive instructional moves, than those who did not. However, 
responding effectively remained the most difficult aspect. Similarly, Luna (2018) observed that 
elementary science teachers varied in their capacity to notice the disciplinary value in students’ ideas, 
highlighting the need for tools to support pre-service teachers in developing disciplinary noticing 
skills (Amador et al., 2022). 

Although research has established the importance of teacher noticing for eliciting and 
interpreting student thinking, studies consistently show that responding in-the-moment remains a 
significant challenge, particularly for pre-service and novice teachers (Barnhart & van Es, 2015; 
Levin et al., 2009). In science classrooms, this challenge is amplified as teachers must attend to both 
the substance of students’ disciplinary ideas and the epistemic quality of their reasoning while 
making real-time instructional decisions (Berland et al., 2019; Russ & Luna, 2013). Existing supports, 
such as video-based reflection and frameworks emphasizing noticing components (Sherin & van Es, 
2009; Jacobs et al., 2010), often focus on retrospective analysis rather than immediate instructional 
guidance. There is a need for tools that bridge the gap between noticing and action during 
instruction by supporting teachers as they decide how to probe, extend, or scaffold student thinking 
in real-time. Therefore, this study introduces a decision tree tool designed to fill this gap by 
providing structured, practical support for pre-service teachers as they respond to students' science 
ideas during classroom discussions. 

Recent work further emphasized the epistemic quality of student ideas as central to noticing 
in science. Berland et al. (2019) proposed Epistemologically Responsive Science Teaching (ERST), 
which encourages teachers to notice and respond to the clarity, consistency, and causality (3Cs) 
within students’ scientific thinking. Attending to these epistemic dimensions helps teachers 
recognize how students’ ideas align with scientific sensemaking and supports their engagement in 
Next Generation Science Standards-aligned practices such as modeling, argumentation, and data 
analysis. ERST provides pre-service teachers with a coherent structure for lesson planning, real-time 
noticing, and assessment, helping them to see scientific practices as interconnected rather than 
isolated. 

Further expanding on the relationship between noticing, PCK, and equitable teaching 
practices, additional studies reveal that novice elementary teachers frequently elicited student 
thinking but struggled to use that information to guide instruction, especially in science, compared 
to mathematics (Amador et al., 2022). Benedict-Chambers and Sherwood (2024) similarly 
emphasized the need for equity-oriented noticing, finding that pre-service teachers often engaged in 
surface-level descriptive noticing but required support to progress toward evaluative and interpretive 
noticing, which considers how lesson designs position students as active knowledge constructors. 

 Within elementary classrooms specifically, much of the interaction around student thinking 
occurs through verbal exchanges between the teacher and student, or students and students, with 
the teacher listening (Kelly, 2014). Concerning these patterns in classroom dialogue, Nicol (1999) 
noted that when pre-service teachers were prompted to examine the questions they asked during 
their exchanges with students, the pre-service teachers found they asked more yes/no questions 
rather than probing questions and that their desire to listen for what was expected overshadowed 
their ability to listen to student reasoning and thinking. Nicol also explained that the preservice 
teachers recognized deficiencies in both their questioning and listening to student answers and 
attributed it to their fear of the lesson moving away from their pre-planned instruction. Levin et al. 
(2009) noted from their study that for pre-service teachers, the issue of learning to attend to 
students’ responses relates to how they are framing their practice. Framing guides what teachers 
focus their attention on when examining what is happening in the classroom. Unless teachers 
“frame” their instruction around student thinking, they may not develop the necessary skill of 
attending to student thinking. Lastly, from their analysis of pre-service teachers’ abilities to attend, 
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analyze, and respond to students’ thinking, Barnhart and van Es (2015) concluded that for pre-
service teachers to provide high levels of analysis and responses to student ideas, they needed to 
demonstrate sophisticated levels of initially attending to student ideas. Each of these studies 
demonstrates the importance of first building the skill of learning to attend to students' thinking 
within discussion and the need to become aware of how they are following up on students’ 
responses to elicit student thinking. For this awareness to develop, beginning teachers, such as pre-
service teachers, need to learn about the purpose of questioning and framing of questions.   

 
The Role of Questioning  
 
         Certain types of questions can help scaffold students’ thinking, assisting them in developing 
solid conceptual understanding, while others serve only to assess correctness. This first type of 
questioning is useful because it helps to facilitate learning by giving implicit feedback that further 
challenges student understanding (Brown & Abell, 2007; Harlen, 2015). It also helps to stimulate 
more elaboration and productive student responses, leading students to deeper conceptual 
understandings. 

Chin (2006) developed an analytical framework to represent classroom talk and questioning 
in science to examine how teachers use questioning to engage their students in thinking about 
content to foster their construction of knowledge. Chin identified various forms of feedback 
provided by in-service teachers in their follow-up moves during initiation-response-follow-up (IRF) 
exchange formats (Mehan, 1979). The follow-up moves that generated the most productive student 
responses were the ones that were non-evaluative and utilized further questioning to elicit deeper 
thinking (Chin, 2006). Teachers’ questions that scaffold students’ thinking and lead them to 
conceptual understanding provide a much greater benefit than those that simply assess correctness. 

Another study in mathematics education examined student-teacher interactions in reform-
based classrooms where students are encouraged to investigate and share their mathematical 
thinking (Wood, 1998). In their study, Wood discussed interaction patterns between in-service 
teachers and students that either encourage or restrict mathematical meaning construction. One 
specific interaction pattern, initially identified by Bauersfeld (1980), is called the funnel pattern.  In 
the funnel pattern, teachers have a specific answer and/or way of thinking about the content that 
they are attempting to lead students to state. Asking funneling questions guides students to one 
determined correct answer rather than encouraging students to share their thoughts about how they 
are constructing their understanding and application of the mathematical task. Conversely, when 
teachers follow a different interaction pattern, which Wood (1998) called a focusing pattern, teachers 
allow students to share their reasoning and thinking without the goal of any specific predetermined 
answer. Although in both the funneling and the focusing patterns, teachers ask questions of 
students, only in the focusing pattern are students encouraged to share their strategies and reflect on 
their mathematical knowledge construction. Focusing questions encourage students to take an active 
role in making sense of mathematics and remove the imposed limit of only one correct answer. 
Through asking focusing questions, teachers can examine student thinking and encourage sense-
making. 

Drawing on this body of literature, we sought to develop an analytical tool to use with video 
of classroom discussion. We refer to this tool as a decision tree that teacher educators can use with 
pre-service teachers to develop awareness of how they are initiating dialogue with students (i.e., the 
initial question) and how they follow up the students’ responses to promote further discussion and 
sense-making. The remainder of this paper focuses on describing how the decision tree tool was 
developed through analysis of multiple video segments of elementary pre-service teachers' early 
science field experience.  
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Development of the Analytical Tool 
 

Context and Selection of Videos 
 

The video used for the development of the tool was captured over two semesters during a 
multi-year NSF-funded Iterative Model Building (IMB) Project (see acknowledgement). The first 
author in this study was a Co-PI for this project, and the other authors were doctoral students at the 
time in a class that the first author was teaching. The class involved learning about how to become a 
science or mathematics teacher educator. The second through fifth authors and the seventh author 
divided into three teams to review two recorded science lessons taught by three different groups of 
pre-service teachers. The sixth author in this study provided support with the literature review and 
conceptual framework for the field of mathematics education. 

Taking a case study perspective (Yin, 2009), we selected three teams (cases) of elementary 
pre-service teachers who had participated in the IMB Project. A total of 14 science lessons across 
three teams were recorded and all had provided consent for their videos to be used for research 
purposes. The elementary schools the pre-service teachers taught in for their early field experience 
were in the same town as the large research university the pre-service teachers attended for their 
teacher education program. One team (or case) taught in a fifth-grade classroom, another in a 
second-grade classroom, and the third in a kindergarten classroom. In total, there were 17 females 
and one male, and 17 of the participants were Caucasian and one was African American. In addition, 
one of the female participants had selected science as her content area of concentration for her 
elementary teaching program requirements. This meant that she was required to take one additional 
science course, a philosophy of science (Nature of Science) course, and one additional science 
methods course targeting upper elementary/middle grades.  However, she did not complete this 
second methods course until after the semester in which the field experience, where the video for 
this study was recorded, was taken.  

Each week, two to three members of the pre-service teacher teams took the lead in 
facilitating the science lesson with the class of elementary children. The other team members served 
as observers or small group assistants. The pre-service teachers leading the instruction of each 
week’s lesson typically split the lesson up into parts, so each person was solely implementing a 
component of the lesson with the whole class of students. This splitting up of duties allowed for the 
analysis of one teacher for each segment of the lesson, which helped when identifying the dialogic 
interactions for the development of the tool, as it was one teacher interacting at a time with the class 
of students. The videos analyzed included five science lessons on Properties of Fabrics 
(Kindergarten), five lessons on Properties of Matter (2nd grade), and four lessons on Models and 
Design using forces on flight for context (5th grade). Each of these topics was requested by the 
corresponding classroom mentor teacher to align with the school district's adopted science 
curriculum. 

 
Phase One – Beta Testing Codes  
 

Given the video we were using to develop the tool was of pre-service elementary teachers’ 
science teaching, our first phase of coding was informed by Levin et al. 's (2009) definition of 
attending to student thinking, which they described as a teacher “notic[ing] and respond[ing] to a 
student’s idea” (p. 147). They further explained different ways teachers can respond including: 1) 
asking a student or other students to explain or elaborate on an idea, 2) rephrasing what the student 
shared, and 3) shifting the lesson to address the idea shared (Levin et. al., 2009). We utilized these 
descriptions initially as the codes for understanding how the pre-service teachers were attending to 
student thinking in the act of teaching. In addition to the three attending codes, we also developed 
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the code ‘acknowledging’ to document the ways that pre-service teachers were not attending to 
student thinking in their instruction. ‘Acknowledging’ meant that the pre-service teacher gave little 
to no consideration as to what the student said before returning a response. Therefore, the teacher's 
response for an acknowledging code included providing general praise, evaluating the answer, or 
asking the student to repeat the response. See Table 1 for a summary of the four levels of coding 
and their descriptions for the first round of a priori coding used in the development of the tool. 

 
Table 1 
 
Initial Draft of Codes Developed for Analytical Tool Adapted from Levin et al., 2009  
 

Code Definition 

Acknowledging 
The teacher did not consider what the student said before returning a response that 
suggested they were not fully listening.  

Attending - shift 
The teacher hears the topic and makes a related comment in return, but then shifts or 
pivots to a new topic with the next question. 

Attending - rephrasing 
The teacher takes what the student said and rephrases it to help others understand or 
asks the student who shared if the rephrased statement accurately represents what 
they were saying. 

Attending - elaborate  
The teacher shifts the attention to a student peer to repeat or elaborate on the 
statement the initial student made. 

 
To begin with the a priori coding noted in Table 1, each pair of coders prepared transcripts 

from watching the videos for the first two lessons taught by the team of pre-service teachers they 
were assigned to. Using these transcripts, Authors 2-5 and 7 coding partners first met to identify 
episodes in the transcript demonstrating an initiation- response- follow-up (IRF) exchange (Kelly, 
2014). Identifying these exchanges was important to give boundaries for coding and to ensure each 
episode included a teacher initiating with a question, a student responding, and then the teacher 
following up. It is how the teacher responds to the follow-up segment and utilizes the conversation 
for instruction that the decision tree tool serves its purpose. The ending of an episode was identified 
as ending when no further or substantial ideas were being shared by students, or a new topic was 
identified. Therefore, some episodes are longer than others, and episodes could be between the 
teacher and one student or the teacher and several students. We did not move to the next level of 
analysis until the team was in 100% agreement as to this definition of identifying an episode, and 
each coding pair agreed on the identification of episodes, using this definition, for their assigned 
videos/transcripts.  

The next step involved the coding partners 1) individually coding a whole transcript for 
lesson one, then 2) coming together and reconciling their results. This was repeated for lesson two. 
A coder first needed to identify within each identified episode if the pre-service teacher leading the 
discussion indeed was showing some attention to student thinking in their follow-up response to the 
student’s comment. This became the first level of the decision tree: Does the teacher attend to the 
student’s thinking? Referring to codes generated from Levin and colleagues, this first level of coding 
determined whether the coders would move down the path of yes – and possibly one of the three 
‘attending’ codes described in Table 1, or no, move to the acknowledging code instead. Codes 
associated with acknowledging follow-up emerged through this process.  

During this beta-testing phase of coding, the coders were asked to also highlight any 
exchanges that they did not feel aligned with codes and/or subcodes on our initial coding structure 
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(Table 1). When Author one and the three sets of partner coders came together to reconcile their 
codes for the beta-testing phase, they discussed any of these highlighted exchanges until 100 % 
agreement was reached. From these discussions, we noticed there were more nuanced examples of 
how the pre-service teachers were attending to student thinking, and not attending to their thinking, 
than our initial coding tool (Table 1) allowed for. Therefore, to better understand how a teacher 
considers a student’s ideas before responding, we further explored the research base and found two 
variations in the mathematics education literature on communication patterns that captured the 
distinct differences in ‘attending to student thinking’ we identified from the first round of analysis. 
These variations are described further in the next section as we explain refining the coding process.  

 
Phase Two - Refining the Coding Schema 
 

It was through this refining process that we began to identify the tool as a decision tree 
because more than one decision needed to be made beyond the initial question of whether the pre-
service teacher was attending to students' thinking. Through this refinement process, additional sub-
codes (or smaller branches of the tree were identified).  

To begin the refinement process, the research team drew on the work of Wood (1998) in 
mathematics education that discusses communication patterns in the classroom. The first variation 
of attending to students' thinking we adopted from Wood was the notion of ‘funneling’, which 
refers to a teacher using well-intentioned questions to guide or focus students’ thinking to a 
particular outcome. The second variation of attending to students' thinking was the concept of 
‘focusing’, which involves the teacher creating situations for classroom talk that allows students to 
explain and give reasons for their science ideas. To further expand on each of these codes, the 
researchers returned to the previously coded transcripts for the first two videos of lessons taught by 
each pre-service teaching team. Again, coding partners individually reviewed the identified bounded 
episodes using the new three-level coding schema of focusing, funneling, and acknowledging. Within 
each of these coded segments, which we refer to in the decision tree as a branch, additional 
emergent coding occurred to identify different examples of focusing, funneling, and acknowledging. 
These examples became the smaller branch decisions in the tool. Allowing for the emergent coding 
also afforded the opportunity to look for various ways that attending to students' thinking and for 
different purposes can occur. This process also led to identifying a second larger branch of not 
attending to student thinking, which we called ‘no response’. This non-attending branch, just as the 
title suggests, was coded in contrast to acknowledging and examples of it occurred when the pre-
service teacher made follow-up comments that showed no consideration of the student’s comment. 
This could include affirmatory or ignoring the comment, and otherwise, but it often resulted in 
shutting down the discussion or completely changing the direction of the discussion.  

As coding partners came together, and then the larger research team, to discuss these 
examples, we were able to condense emergent codes across all four main branches (funneling, 
focusing, acknowledging, or no response), provide definitions for each, as well as the smaller 
branches coming from each. These definitions and examples of each from episodes identified in the 
data were reached with 100% agreement among the research team and are provided in Appendix A.  

The recursive process the research team used to generate this code book for the decision 
tree helps to ensure inter-rater reliability and validity in the coding process and applicability of the 
tool across grades and topics. Because of the tiered analysis process, specific inter-rater reliability 
calculations were not made, as the goal was to reach agreement across all of our identified episodes 
to produce a comprehensive tool. For the final step, and to determine saturation in the definitions 
for each branch of the tool, the coding partners returned to the final three lessons taught by each 
pre-service teaching team and applied the decision tree tool to ensure no additional codes emerged. 



DEVELOPING TEACHER NOTICING 9 

Codes identified in the tree represented each of the follow-up responses a teacher provided, thus a 
point of saturation in coding was reached.  

 
Final Steps of Development and Application 
 

In the end, three smaller branches were identified for the main ‘focusing’ branch, four smaller 
branches were identified for each of the funneling and acknowledging main branches, and the fourth 
main branch, ‘no response’, also had three smaller branches stemming from it. Each main branch 
and the smaller branches extending from them are described below. 

 
1. Focused, attending: When pre-service teachers were focused on what the students were saying 

they would: 1) ask students to elaborate on their response and explain their reasoning, 2) ask 
students to provide an application of their idea, or 3) shift the flow of the lesson to explore a 
student’s idea further.  

2. Funneled, attending: When the pre-service teachers funneled students’ ideas towards a specific 
learning outcome they would: 1) use the student responses to bridge to the next concept to 
lead students to the intended answer; 2) ask an open-ended question, but after no response 
follow-up with a closed question; 3) ask an open-ended question to review past concepts; 4) 
ask questions that are intended to model for students how they should be thinking through 
an activity.   

3. Acknowledging, not attending: For this branch it was observed that the pre-service teachers 
responded to a student’s comment by: 1) recognizing the student said something but not 
fully paying attention to what was said because their next follow-up comment was unclear, 
unrelated, or referenced only a part of the student’s idea; 2) paying attention to what was said 
but for correctness; 3) paying attention to what was said but only to motivate or encourage 
the student to participate; 4) asking students to repeat or rephrase their responses to ensure 
it was heard by others but no connection was made to the idea the student shared.  

4. No response, not attending: This branch included examples of when the pre-service teacher 1) 
clearly ignored a student’s response by asking a new and unrelated question, 2) stated the 
idea to the students’ they were looking for as a student response; 3) asked a rhetorical 
question as a follow-up to the student’s response. Although this type of exchange suggests 
limited communication, we believe it is important to include this code, as it affords teachers 
the ability to recognize how teacher responses to a student comment can also cause 
communication patterns to be limited or even stopped.  

 
Figure 1 illustrates the decision-tree tool, showing these four main branches coming from 

the initial question: Is the teacher attending to students' thinking in the discussion? If the answer to this 
question is yes, then the teacher follows the left path on the decision tree to code for how. If the 
teacher is not attending to students’ thinking, then follow the right path of the decision tree to 
identify why. We recommend this tool be used with video, and preferably transcripts of the video, if 
available. Having both the video of instruction and the transcripts can make it easier for first 
bounding episodes for coding. However, it could potentially be used as an in-the-moment 
observation tool, but with space provided for documenting frequency counts and perhaps a section 
for notes to summarize an example of one exchange to illustrate a decision most frequently made by 
a teacher in discussion with students. 

We also recognize the smaller branches under each of the four main codes are not an 
exhaustive list of possible responses a teacher may give in following-up from a student’s comment, 
but these branches (or examples) were reached through an iterative process of reaching saturation 
across the 14 videos for the data set we had access to for this study. Therefore, depending on 
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whether the tool is used with pre-service teacher video or exemplary teacher video, it is possible that 
additional smaller branches of interactions could be found. The design of this tool allows for this 
kind of flexibility.  
 
Figure 1 
 
Decision Tree Tool for Developing Awareness About Attending to Students’ Thinking During Discussions  
 

 
 

 
What We Learned About Pre-service Teachers' Attention to Students’ Thinking 

 
To illustrate the potential of information that can be gleaned from using the tool with pre-

service teachers' own teaching video, we kept records of our coding results across the three teams of 
pre-service teachers. The purpose of this section is to share these results to illustrate the potential 
use and outcomes of the tool.  

In total, there were 291 coded Initiate-Respond-Follow-up (IRF) segments, or what we refer 
to as the bounded episodes of classroom dialogue. This number of episodes includes the coding 
across all three teaching teams (cases) for the full set of 14 lessons. Of the 291 episodes, the 
kindergarten case had 101 coded episodes in five lessons, the second grade case had 110 coded 
episodes in five lessons, and the fifth grade case had 80 coded episodes across their four lessons. 
Table 2 provides a breakdown of how these episodes were identified across the four main branches 
of focusing, funneling, acknowledging, and no response, and the smaller branches for each case. 

 



DEVELOPING TEACHER NOTICING 11 

Table 2 
 
Frequencies by All Branch Levels Compared Across All Three Teaching Teams 
 

Decision Tree Branches – Main and Smaller Branches 
Grade K 
(n=101) 

Grade 2 
(n=110) 

Grade 5 
(n=80) 

No response  

Teacher ignores student response by asking a new or unrelated 
question to class. 

5 2 3 

Teacher ignores student response and follows with the idea the 
teacher was looking for 

8 3 3 

Teacher asks rhetorical question with no intention of receiving a 
student response. 

4 4 0 

Totals 17 9 6 

Acknowledging 

Teacher gives a generic follow-up comment of “Ok” or “Thanks” and 
moves to another student. 

6 9 2 

Teacher responds to correct student thinking 15 39 16 

Teacher asks student to repeat or rephrase response to ensure peers 
heard comment. 

3 3 3 

Teacher responds with a comment to offer positive encouragement 
but not a substantive connection to student’s shared idea. 

18 30 12 

Totals 42 81 33 

Funneling 

Teacher uses student's responses to bridge to next concept with the 
goal of leading student to an intended answer. 

16 10 25 

Teacher initiates follow-up with an open-ended question, but after no 
student response follows with a closed question. 

5 7 2 

Teacher asks open questions to review concepts previously 
experienced. 

7 2 2 

Teacher asks questions to model for student how to think through an 
activity. 

6 0 0 

Totals 34 19 29 

Focusing 

Teacher asks student to elaborate on their response by explaining 
their reasoning for that response. 

7 0 11 

Teacher asks student to provide a different example of their idea 
(application). 

0 1 1 

Teacher uses student idea to "shift the flow" of the lesson to explore 
the idea further. 

1 0 0 

Totals 8 1 12 

 
Of the four main branches, we found that most of the episodes (156 of 291 total or 53.6%) 

were coded to acknowledging. More specifically, the second grade case had 81 of their 110 (73.6%) 
coded as acknowledging; whereas the kindergarten case had 42 of their 101 coded episodes (41.6%), 
and the fifth grade case had 33 of their 80 episodes (41.3%) coded as acknowledging. Examining this 
difference between the second grade case and the other two cases further, we see the second grade 
case had many more episodes coded for responding to correct thinking by students or offering 
positive encouragement of a response, despite the quality of what the student said. This suggests the 
pre-service teachers on the second grade team, compared to the other two cases, either viewed their 
purpose for questioning to ensure accurate answers were shared, or that they struggled with asking 
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questions that went deeper in understanding students’ thinking. Becoming aware of and 
understanding the reasons for these patterns can provide critical information for teacher educators, 
or even a teacher themselves, to try and plan for better follow-up responses that will extend the 
conversations further and build more or connect more with different students’ ideas.  

 The second main branch in total frequencies was attending to branch of funneling. Overall, 
this branch received 28.2% (82 of the total 291) of the coded episodes. Specifically, the kindergarten 
case had 34 of 101 coded episodes (33.7%) to this category, second grade had 19 of 110 coded 
segments (17.3%), and fifth grade had the highest frequency with 29 of 80 coded episodes (36.3%) 
as funneling. Of the smaller branches coming from funneling, the one receiving the most coded 
episodes was – Teacher uses student's responses to bridge to next concept with the goal of leading student to an 
intended answer. This smaller branch received 51 of the total 82 (62.2%) coded episodes for funneling. 
These findings suggest that the pre-service teachers across all three cases valued hearing students’ 
ideas, and to bridge from one student’s idea to the next concept, and often to lead the conversation 
to a specific goal. Being aware of this communication pattern offers teacher educators and teachers 
opportunities to discuss alternative questioning techniques with teachers that could foster more 
sense-making opportunities to build students’ ideas collectively and press for more evidence-based 
explanations (Windschitl et al., 2018). Identifying these patterns can also open up the opportunity to 
show teachers how to use more productive wait time before responding to a student’s comment. 

The main branch with the fewest total coded episodes was focusing. The smaller branches 
associated with this main branch also demonstrate the most connection to students’ thinking is 
being attended to, in such a way that it is driving the communication pattern. Overall, fifth grade 
had 12 of their 80 episodes (15%) coded to the focusing branch, kindergarten had 8 of their 101 
coded episodes (7.9%) coded to this branch, and second grade had 1 of their 110 episodes coded to 
this branch (0.9%). Becoming aware that the attending branch of focusing is the branch that 
teachers are least demonstrating an ability to support as a communication pattern is telling for 
teacher educators. This branch is the one that is most likely to support students to engage in the 
discussion for sense-making purposes and build reasoning about the science concepts by connecting 
the students’ ideas (Davis et al., 2020). Thus, more attention needs to be given in teacher education 
programs on how to help novice teachers navigate these complex patterns of classroom talk (Abell 
et al., 2010; Davis et al., 2020; Gallas, 1995).  

These results illustrate the potential for information that can be produced using the decision 
tree tool. This kind of information can provide not only teacher educators with a broad view of how 
their pre-service teachers are responding to student thinking but also bring awareness to pre-service 
teachers themselves if they were to use this tool to analyze their own teaching video. Reflecting on 
this information about how, and why, a teacher is attending to (or not attending to) students’ 
thinking in the act of teaching can help to develop awareness of what are both the strengths and 
weaknesses in one’s practice (Gotwals & Birmingham, 2016). Additionally, it can assist with 
understanding questions that work well to initiate discussions and welcome student comments that 
can then be attended to more easily (Elstgeest, 2001). In turn, this can lead to more productive 
classroom discussions (Gallas, 1995). In conclusion, understanding this more detailed level of 
analysis, which the decision tree tool offers, affords teacher educators a starting place to talk with 
their preservice teachers about attending to students’ ideas as the critical first step or precursor to 
professional noticing. 

 
Limitations and Next Steps 

 
Although this tool has the potential to significantly contribute to the field of teacher 

education, we recognize that the process used to develop the tool has some limitations. First, we 
developed this only using elementary pre-service teacher videos. To determine if it is applicable for 
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use with middle or secondary contexts, the tool would need to be tested with video in those 
contexts. Recently, the first author published a piece with a collection of secondary mathematics and 
science teacher educators (Zangori et al., 2025). Second, with the focus on pre-service teachers 
practice as the context, it is uncertain if all these smaller branches would also show for in-service 
teachers, especially exemplary classroom teachers. Again, the tool should be applied to videos of 
these teachers' practice determining its utility for these contexts. Given the initial purpose of this 
tool was to provide teacher educators and/or their pre-service teachers with a user-friendly tool for 
analyzing practice and to become aware of their attention to (or no attention to) students’ thinking 
in their novice teaching contexts, the data reported from the application of the tool with the three 
teams of pre-service teachers illustrates the tool meets this purpose. 

Furthermore, our tool was designed primarily to identify pre-service teachers’ attention to 
student thinking. However, recent research highlights that noticing in science classrooms must also 
account for the epistemic and equity dimensions of student sensemaking (Berland et al., 2019; 
Benedict-Chambers & Sherwood, 2024; Rosebery et al., 2016). Future adaptations of the tool could 
incorporate these dimensions to better capture the complexity of science classroom interactions and 
support teachers in making responsive and equity-oriented instructional moves.  

Regarding future use for the decision tree tool, using it to compare different levels of 
expertise in teaching science could be a productive approach to developing pre-service teachers’ 
ideas about how to hold science talks (Gallas, 1995). Many elementary teachers’ own science learning 
experiences perhaps followed more traditional approaches with less emphasis on understanding 
scientific reasoning, and thus their knowledge of how to talk about science ideas may be limited 
(Appleton & Kindt, 2002). Holding these discussions in the context of their pre-service science 
methods class may help to develop their identities as teachers of science because they are engaged in 
the act of professional noticing with peers (Abell et al., 2010; Davis & Smithey, 2009; Jacobs et al., 
2010; Sherin & van Es, 2009). 

Additionally, longitudinal research could trace pre-service teachers’ noticing development 
from their initial teacher education into their early years in the classroom, addressing calls for such 
studies (Barnhart & van Es, 2015; Chan et al., 2021). Such research could illuminate whether tools 
like this support sustained growth in teachers’ capacity to notice and respond to students’ ideas as 
they transition into in-service teaching. Furthermore, examining how pre-service and early career 
teachers’ epistemological framing of their noticing practices could provide deeper insight into how 
noticing tools interact with teachers’ beliefs (Luna, 2018; Russ & Luna, 2013). 

Finally, in addition to its use with pre-service teachers, we believe this tool has great potential 
for supporting in-service teacher development. For many of the same reasons this tool could benefit 
pre-service teachers in developing their awareness of how they are attending to student thinking, this 
tool could also assist in-service teachers with learning how they facilitate classroom interactions to 
promote students’ scientific thinking (Sherin & van Es, 2005; Talanquer et al., 2013). For example, 
teachers could use this tool within the context of professional learning communities to support one 
another by identifying patterns in their classroom conversations with students (Lave, 1991). For 
professional developers working with in-service teachers, this tool could help them initially identify 
individual teacher needs to target in their professional development projects. This level of 
identification would enable professional developers to track changes in teachers’ practice throughout 
the project and determine if teachers are meeting the professional development goals. 

Moreover, integrating the tool into professional development settings where teachers 
collaboratively analyze video records of their own and others' classrooms could enhance its impact 
(Barnhart & van Es, 2015; Sherin & van Es, 2009). Research suggests that video-based professional 
development fosters teachers’ ability to attend to the substance of student thinking and reflect on 
their own practice (Amador et al., 2022; Sherin & van Es, 2005). Professional development using the 
tool could also emphasize the importance of equity-focused noticing, encouraging teachers to 
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consider how their instructional moves position students as capable contributors to scientific 
discourse (Benedict-Chambers & Sherwood, 2024; Rosebery et al., 2016). 
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Appendix 
 
Examples of Episodes Used with the Development of Decision Tree Main and Smaller Branches. 
 

Branches Dialogue Examples 

FOCUSING 

Teacher asks student to 
elaborate on their 
response by explaining 
their reasoning for that 
response. 
 

T1: …Did anybody else try using paper besides lined? 
S: We tried to use tissue, but it didn’t work. 
T2: It didn’t work?  Why don’t you think it worked? 
S: Because it was way too thin. 
 

Teacher asks student to 
provide a different 
example of their idea 
(application). 

T1: Can somebody give an example of what it means when something 
is two dimensions or something is three dimensions? 
S1: 2-D is flat and three D actually like pops out. 
T1: Okay 
T2: Does that make sense? Like somebody give me an example of 
something that's 3-D? 
S2: Ms. Young’s desk. 
T1: What about 2-D? 
S1: Paper 

Teacher uses student 
idea to "shift the flow" 
of the lesson to explore 
the idea further. 

S1:  Um, some are different and not all the same color.                                                                      
T:  And that’s OK because right here we are sorting them by size. But 

could you sort them by color too?                                                                                                                                                                   
S1:  Nods to indicate yes.                                                                                                                                              
T:  You could? How would you do that?    

https://doi.org/10.1177/0022487108328155
https://doi.org/10.1002/tea.21074
https://www.learntechlib.org/primary/p/9171
https://doi.org/10.1080/10402454
https://doi.org/10.1111/ssm.18342
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Branches Dialogue Examples 
S1: You would see if they are the same color.  
T: OK, so maybe if you had three oranges ones you’d put them here.  
S1:  Nods to indicate yes. 
T: If you had two green ones you would put them in a different pile. 

FUNNELING 

Teacher uses student's 
responses to bridge to 
next concept with the 
goal of leading student 
to an intended answer 

T:  An ice cube.  So we’d have ice cubes in here, they would be a solid.  
What did we just do?  We changed a liquid into a…  
S1:  Solid?   
T:  Solid.  OK, and then if I’m like, well, I’m tired of these ice 
cubes…I’m going to dump them out, we’re all gonna go to recess, then 
when we come back…what would happen to our ice cubes?   
S1:  They would turn into water.   
T:  They would turn in to water.  Which one did we say water was? 
S1:  A liquid.  
T:  A liquid.  So, we would have essentially a puddle of water, right?  
(Doesn’t wait for student responses.)  OK…so our state changes that 
we’re talking about, they are from a liquid to a solid and a solid to a 
liquid. So, I just gave you the example of turning water into ice and 
then turning the ice back into water. 

Teacher initiates 
follow-up with an 
open-ended question, 
but after no student 
response follows with a 
closed question. 
 

T: Okay, now let’s talk about item A. What did you guys notice about 
that? 
S1: It is a lotion. 
T: How did you know it was a lotion?   
S1: It smells like it and feels like it.  
T: It smells like lotion and feels like lotion? Okay, We will now talk 
about matter. What is a lotion? 
S2: It is solid. 
T: She thinks it is a solid.  What is everybody else thinking? 
S3: Liquid 
T: He thinks it is liquid. Why do you think it is liquid?  
S3: It moves. 
T: Alex says lotion is movable.  That is very good. What else about 
lotion makes it liquid or solid? If you think it is a liquid raise your 
hands.  Do you think it is a solid?  

Teacher asks open 
questions to review 
concepts previously 
experienced. 
  
 
 
 
 

T: OK boys and girls, who can tell me what we worked with last week?  
S1 : Fabric. 
T: Fabric. What did we use with the fabric? 
S2: Um, we heard the sounds we hear. 
T: The sounds with fabric. What else? 
S3: We used our five senses. 
T: Our five senses, good. Can you guys remind me what the five senses 
are?  
S4: We didn’t use one of them. 
T: Which one didn’t we use? 
S4: Eat. 
T: Eat. Our sense of taste (points to her mouth). We don’t want to taste 
the fabric. 
S (all): Laughing and making yuck sounds. 
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Branches Dialogue Examples 
T: So which ones did you use?  
S5: Uh…see, uh hearing. 
T: Our hearing, OK. 
S6: Our sense of touch. 
T: Our sense of touch. Our sense of hearing. [Holds up 2 fingers to keep 
track]. 
S7: Our sense of smell. 
T: Smell and 
S8: Our sense of see. 
T: Sight. OK, that’s four. And we didn’t use taste, right? 
S2: No.  

Teacher asks questions 
to model for student 
how to think through 
an activity. 
 

T1: So who would like to help me sort these into two piles?  Do you 
want to come up here.  How could we sort all these fabrics into two 
piles?  
T2: What’s one sense that you could use to sort them?  
S1: Feel 
T1: Okay, how does it feel – if you look at the word wall – soft, 
smooth, bumpy, hard?  
S1: It feels bumpy. 
T1: Bumpy.  Okay do any of the others feel bumpy?   Does that one 
feel bumpy? 
S1: Nods head  
T1: Any others?  
S1: Student shakes head. 
T1: No okay so we can sort these into one pile.  Does someone want 
to come up and make a second pile?  
T2: So instead of bumpy what kind of feeling do you want to use? 
S2: These are soft. 
T1: So these three feel soft.   

ACKNOWLEDGING 

Teacher gives a generic 
follow-up comment of 
“Ok” or “Thanks” and 
moves to another 
student. 
  

T: Okay can anybody, just in case anybody else in the class might not 
know, can anybody tell me what it means to make a prediction?   Does 
anybody remember what a prediction is?   
S: Umm it’s when you make a prediction it’s not a right or wrong 
answer. 
T: Okay so prediction is when you think prior to actually acting out 
your investigation.  So last week we actually made predictions about 
what would happen if water was put onto those fabrics and some 
people said they were going to stay on top, some said they were going 
to go through, but when we actually went to the tables and did the 
activity we were able to come up to the front and fill out our chart and 
put what happened when the water was put on the fabrics.  And this 
week we are going to do the same thing. 

Teacher responds to 
correct student 
thinking. 
 

T: In your journals, can you write something else that you think has gas 
in it? 
S: Basketball 
T: A basketball. That is right. It has gas in it. 
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Branches Dialogue Examples 
Teacher asks student to 
repeat or rephrase 
response to ensure 
peers heard comment. 

T: What do we hear?  What are some things that we can hear? 
S2:  Umm pop stuff. 
T: (leans forward to student) You can hear what? 
S2: (repeats) Pop stuff 
T: Things that pop.  Yeah, things that might pop.   

Teacher responds with 
a comment to offer 
positive encouragement 
but not a substantive 
connection to student’s 
shared idea. 

T: Yeah did you have one to share? 
S: Yep.  
T: Okay can you tell us about it?  
S:  This one has colors all over the place.   
T: So this one has lots of colors. 
S: And then light ones. 
T: So these are light colors for his second pile. And what’s your third 
one?  
S: Dark colors  
T: And this one was a dark color.   

NO RESPONSE 

Teacher ignores student 
response by asking a 
new or unrelated 
question to class. 
 

T: Let’s say my Dad is architect and needs to build a structure between 
2 cities, but there is a river between them. Is there any type of structure 
that you think would work well? 
S1: An arc?  
T: An arc. Ok.  What would an arc do? 
S2: It’s just like a little rainbow 
T: Now I want cars to be able to travel from city to city 

Teacher ignores student 
response and follows 
with the idea the 
teacher was looking for. 

T: We already used sight and we already used feel so what sense do we 
still need to use? 
S: I’m not going to taste.   
T: So we didn’t use our hearing.   
S1: Got it. 
T: Okay how did you do it?  
S: Explaining (can’t hear). 
T: Okay but shat sense have we used?  We’ve used touch, we used 
sight, so let’s try to listen.  What did you say?  What did you say this 
sounded like?  
S1: It sounds like sand. 
T: So could we put all fabrics that sound like sand together.   
S1: None of them sound like sand.   
T: Can we put them in three groups?  
S1: Explains her three piles. 

Teacher asks rhetorical 
question with no 
intention of receiving a 
student response. 

T: Ok, if you could- you can’t really see DNA with your hands, like if 
you held it out in front of you, it would be really tiny, you couldn’t see 
it.  Do you think it would be easy to learn from that if you can’t see it?  
Like, the real-life thing?  It would be hard to learn from. 

 
Note: Each row is a separate episode coded from across all 15 videos. S = student; T = Teacher. 
Students and teachers change from row to row, providing representation of all three grades and pre-
service teaching teams.  
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ABSTRACT 
 
The 21st-century skills seek to develop learners who will be problem solvers in society. This paradigm 
shift requires the use of learner-centered strategies that emphasize collaborative problem-solving. 
To explore the effectiveness of such approaches, this study sought to determine how effective 
Wheatley's problem-centered approach would be in the attainment of learning outcomes of students 
in genetics by comparing it to the conventional teaching approach. Using an embedded mixed-
methods design, an intact class was selected randomly from two schools. The pre-test-post-test non-
equivalent group design was used to obtain quantitative data, while interviews were used to obtain 
qualitative data. The students in the experimental group learned biology concepts using the Wheatley 
model while those in the control group were taught the same concepts through the conventional 
teaching approach. Students in the experimental group performed better on the post-test than those 
in the control group. The performance of the low achievers within the experimental group also 
improved. Students expressed an overall positive attitude toward the use of the Wheatley model as 
an instructional strategy. It was therefore recommended that biology teachers should employ the 
Wheatley model in the teaching and learning of biology at the Senior High School level. 

 
Keywords: problem-centered learning; Wheatley model; high school biology; instructional approach; 
constructivism 

Introduction 
 

Stakeholders in education over the years have placed responsibility on teachers for students’ 
academic failures. Such blame emanates from the fact that teachers are seen as an integral component 
of the schooling process. Teachers’ personalities, knowledge, attitudes, and pedagogical strategies 
affect the attainment of learning outcomes for students. For successful and effective teaching, teachers 
are required to select appropriate pedagogical strategies that can maximize students' learning. Abell et 
al. (2010) argued that teachers' pedagogical actions affect students' learning outcomes. Therefore, poor 
teaching approaches are claimed to be one of the major pivotal issues to students’ poor performance 
in the sciences (Abell et al., 2010; Hassard & Dias, 2013). 

Consequently, teachers must explore and use appropriate approaches to teaching to facilitate 
and maximize students’ learning. However, the task of selecting an appropriate pedagogical strategy 
becomes daunting with the availability of several teaching methods. Although there are several 
teaching approaches, educationists believe that for effective teaching, teachers must employ 
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constructivist teaching strategies (Fosnot, 1989; Steffe & Gale, 1995; Tobin & Tippins, 2012; 
Zemelman et al., 1993). 

The call for the utilization of constructivist teaching approaches is hinged on the assumption 
that such approaches are student-centered, foster student collaboration, and increase students’ 
academic achievement. The learners are assumed to create their knowledge and meaning through 
interaction with others (Hand et al., 1997). Learners, through their personal experiences, socially 
interact with others to arrive at an appropriate understanding of content (Bruning et al., 2004). 
Individual learners ultimately construct a personal version of the socially negotiated meaning (Taber, 
2012). Learners’ conceptualizations of scientific concepts are enhanced as they interact, discuss, and 
elaborate ideas with their colleagues (Mazur, 1997). 

Aulls (2002) refers to such discussion as academic discourse and notes that substantive 
academic discourse facilitates students’ exploration of curriculum topics and material. Students’ ability 
to argue and communicate is enhanced through discussions they engage in during cooperative and 
group learning (Pagan, 2016). Such discussion involves students talking about the subject and arriving 
at their conclusions rather than simple, routine interactions between instructors and students (Aulls, 
2002). Students' learning, therefore, is not based on the instructor's instruction but rather on the 
students' work (Schuh, 2003). 

Constructivist approaches provide students with skills that can be used outside the classroom 
as well as reinforce social cognition (Aulls, 2002). These traits are developed because constructivist 
instructional goals facilitate student application of external knowledge sources and encourage students 
to utilize scientific reasoning as they solve realistic, real-life problems collaboratively, leading to the 
development of elicited social cognition (Echevarria, 2003; Petraglia, 1998). Thus, effective 
constructivist instruction leads to the development of various skills needed for a successful existence 
in the 21st century. 

The developers of the Ghanaian Senior High School (SHS) Biology syllabus realize the 
strengths of student-centered approaches and have therefore advocated for its use in the teaching and 
learning of Biology concepts at the SHS level (Curriculum Research and Development Division 
[CRDD], 2010). Moreover, the new Ghanaian curriculum for the pre-tertiary level also emphasizes 
that science education should produce learners who will be problem solvers and innovators through 
the contextualisation of learning, making students act as knowledge creators (National Council for 
Curriculum and Assessment [NaCCA], 2020). The idea is to enable learners to become knowledge 
creators, drawing from their prior experiences. This shift in teaching philosophy calls for constructivist 
paradigms and approaches.  

Unfortunately, the call for a shift to constructivist approaches is not supported by the 
suggestion of specific strategies to be used even though Ghana operates a syllabus system where 
teaching activities are explicitly suggested. This creates a situation where Ghanaian biology teachers 
find themselves in a conundrum as to which of the approaches will be best suited for the peculiarities 
of their students’ learning and their classroom environments. Thus, to successfully entice teachers to 
use constructivist approaches, efforts should be made to identify strategies that will be appropriate for 
the Ghanaian context.  

One of the constructivist approaches that is effective and efficiently employs real-life 
contextualized problems is the Wheatley model (Wheatley, 1989). Wheatley pointed out that 
knowledge is not passively received but actively built up by the student in the learning process through 
the solution of realistic problems in a social setting.  In this approach, a student’s ability to organize 
information in unique ways and relate with others to have shared knowledge in a community 
constitutes learning. To facilitate the development of personalized learning, teachers are expected to 
guide learners through the provision of motivating and challenging tasks that learners will accomplish 
through social dialogue (Wheatley, 1991).  
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The Wheatley model is a problem-centered teaching model that is made up of three 
components: task, cooperative learning, and sharing. The Wheatley model is shown in Figure 1. 
 
Figure 1  
 
Wheatley Model Adapted (Wheatley, 1989). 
 

 
 
 
 
 

 

 

 

 

The model begins with a task to be performed by students. The task is a concept or a topic 
that may cause a problem for students in their learning process. The task should consist of a set of 
problematic issues that address the core concepts of the subject. Such tasks facilitate the development 
of in-depth cognitive models (Dolmans & Schmidt, 2000), leading to the development of effective 
problem-solving skills, flexible knowledge, and self-directed learning skills (Hmelo-Silver, 2004). The 
provision of tasks to students provides an avenue for them to draw on their experiences to come up 
with uniquely personal solutions. Wheatley (1991) accentuated that "the core of problem-centered 
learning is a set of problematic tasks that focus attention on the key concepts of the discipline that 
will guide students to construct effective ways of thinking about that subject” (p.16). An appropriate 
and effective task should incorporate interdependence among students without compromising 
individual student accountability (Jolliffe, 2007). To successfully achieve the benefits of problem-
centered learning, Wheatley (1991) argued that the task should motivate students to dialogue and 
communicate, make informed decisions, ask higher-order questions, be enjoyable, and encourage the 
transfer of learning. 

Students work on the task in cooperative groups. Slavin (2011) explained cooperative 
group/learning as “an instructional method in which instructors organize students into small groups, 
which then work together to help one another learn academic material” (p. 344). Cooperative learning 
helps students to meet colleagues who have marginally advanced cognitive levels, one within the 
student's zone of proximal development (Applefield et al., 2000). The improvement of learning 
outcomes collectively by the group of learners is underpinned by the principles of positive 
interdependence where the attainment of individual outcomes is hinged on the success of other group 
members and individual accountability where every student contributes effectively to the group work 
(Abramczyk & Jurkowski, 2020; Johnson & Johnson, 1985; Jolliffe, 2007; Slavin, 1995).  

The creation of positive interdependence and the contribution of individual efforts through 
individual accountability creates a social constructivist classroom (Applefield et al., 2000). Teachers 
believe that such interactions in cooperative learning foster the development of personal and social 
learning (Abramczyk & Jurkowski, 2020). Therefore, to achieve the utmost benefit of cooperative 
learning, students should not just be put in groups with the hope that they will work effectively 

Task 

Sharing  
 

Co-operative 
learning 
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(Jolliffe, 2007; Veldman et al., 2020), but rather conscious efforts should be made to ensure that the 
task demands interdependence and accountability on individual students (Jolliffe, 2007). 

Finally, the sharing stage seeks to give time to students to present their solutions, inventions, 
and insights (Wheatley, 1989). Students in various groups share their ideas with the class, whereby 
they learn to socially negotiate to come to an acceptable compromise when they disagree on answers 
and methods (Wheatley, 1991). Students' level of mastery and conceptualization of concepts improve 
when they can successfully explain concepts, methods, and answers to their contemporaries (Brooks 
& Brooks, 1999).  

Moreover, students develop communication skills and master creative thinking as a result of 
effectively sharing their views with their peers. Here, the group shares their outcome or solution to 
the problem, and those listening develop the skill of honest talk and active listening respectively 
(Jolliffe, 2007). Ultimately, the sharing stage will facilitate the development of students’ language skills 
and bring to the fore contentious issues and different perspectives on the solution to the task 
undertaken. (Kagan & Kagan, 2009). Students have lots of ideas to share, and when they master the 
completion of tasks in a group, the internalization of information arises for each person to diverse 
degrees, according to their personal experience.  

Although the problem-centered approach is a student-centered learning strategy, teachers have 
their roles to play. The teacher observes and interacts with the students as they search for their 
information in their cooperative groups and provides support to the whole group instead of individual 
students (Wheatley, 1991). Teachers should serve as role models in terms of behavior expected to be 
seen in students during the enactment of problem-centered approaches (Veldman et al., 2020). Such 
behavior modeling should be seen throughout the learning period through the demonstration of 
facilitating skills and an impartial, non-judgmental role during the sharing period (Wheatley, 1991).   

Since the Wheatley model is found to maximize students’ learning in a collaborative environment, 
it will be prudent if its effectiveness is ascertained in the teaching and learning of genetics concepts in 
the Ghanaian educational context. In this regard, this paper reports the outcome of research 
conducted to explore the effectiveness of the Wheatley model in the teaching and learning of genetics 
concepts. The following hypotheses and research questions guided the research: 

 
Ho1: There is no statistically significant difference between the achievement scores of students 
exposed to the Wheatley model and students exposed to conventional instruction.  
H02: There is no statistically significant difference between the post-test scores of low achievers 
and high achievers when instructed through the Wheatley model. 
 

Research question:  
 
What are students' attitudes toward the Wheatley model as an instructional strategy? 

 
Methods 

 
Research Design and Procedure  
 

The research design that was employed for this study was the quasi-experimental control and 
experimental non-equivalent group design since the subjects were not assigned randomly to the 
control and the experimental groups (Shadish et al., 2002; White & Sabarwal, 2014). The design was 
appropriate because it reduced the interactive effect of treatment and increased the external validity 
of the findings (Creswell & Plano Clark, 2011). In addition, the choice of quasi-experimental design 
for the study allows the investigation of intact groups in real-life classroom settings since it was not 
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necessary to randomly assemble students for any intervention during the school hour to create artificial 
conditions.  

Two senior high schools were randomly selected from the senior high schools that offer 
elective science subjects through the use of a table of random numbers. The school that was selected 
first was the experimental group, and the second school selected was the control group. In this study, 
the performance of students was the dependent variable, whereas the teaching strategies (the Wheatley 
model and a conventional approach) were the independent variables. The study used two separate 
treatments. The control group was taught through the conventional approach of teaching. In this 
approach, the teacher-led class interaction mostly explained concepts to students. The approach in 
this group was a typical lecture technique of teaching interspersed with questions to which students 
had to respond. The experimental group was taught the same topic using the Wheatley model. Both 
groups were taught simultaneously.  

To ensure that there was no interaction effect, the selected schools were in different towns 
but within the same municipality. Since the teacher factor is an important variable of instruction, the 
same teacher taught both groups. It was ensured that the content to be delivered was the same, with 
the only differing attribute being the pedagogical approach through which the concepts were delivered. 
A post-test was conducted to ascertain the performance of both groups after the instruction. All the 
students in the experimental group were interviewed. Interviewees were given assurance of 
confidentiality and anonymity before the interview session. Express permission was also sought from 
the headmasters of the schools in which the study was conducted. The third layer of permission and 
consent was sought from the students in both groups. Students were assured of the confidentiality 
and anonymity of their responses, especially those who were interviewed. The interviewees were made 
aware that their responses would be recorded with an audio tape recorder.  
 
Sample  
 

Seventy-five senior high school year two students drawn from two intact classes from two 
randomly selected schools in the Bolgatanga Municipality of the Upper East Region of Ghana 
constituted the sample for the study. There were 41 students in the control group and 34 students in 
the experimental group. In each school, the simple random sampling technique was used to select one 
intact class for the study. The two selected classes from the two schools were categorized as 
experimental and control groups based on a pretest conducted after the classes were selected. 

 
Instrument 
 

Biology achievement tests (pre-test and post-test) and interview schedules were employed as 
the instruments for this study. The pre-test was based on first-year topics in the biology syllabus, which 
the students in both groups had been taught. The pre-test was used to ascertain whether the two 
groups were performing at the same level before the experiment and therefore comparable in terms 
of achievement. Thus, the pre-test was used to identify the entry characteristics of the students to 
determine if they shared similar traits and attributes. Again, since the focus of the paper was on 
students' performance on the post-test, it was deemed not appropriate to assess the students on the 
yet-to-be-treated concepts since the use of the same test items for pre-test and post-test could 
confound students' actual performance. 

The pre-test was also used to group the students in the experimental group into low achievers 
and high achievers. Students with scores lower than the group mean on the pre-test were categorized 
as low achievers, and those with scores above the mean were termed as high achievers. Post-test was 
based on the topic of genetics, which was taught during the intervention to find out students' 
performance after the intervention. There were 25-item multiple-choice questions in the pre-test and 
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the post-test. The pre-test and post-test items were used to find out the performance of the students 
before and after the intervention, respectively. The Kuder-Richardson (KR) 20 coefficient of reliability 
test was established for the achievement test items. The result indicated a reliability coefficient value 
of 0.7, indicating reliable test items for a classroom test. The KR 20 was used because the test items 
were multiple-choice questions and were scored either correct or incorrect. A semi-structured 
interview, which forms part of the instrument for the study, was used to find out how the students 
found the Wheatley model in terms of interest, understanding of the course content, and difficulties 
they might have encountered while working with the teaching model. 
 
Data Analysis  
 

Quantitative and qualitative analyses were used in this study. The independent sample t-test 
was used to analyze the quantitative data from the pre-test and post-test. The independent sample t-
test was used to find out if there existed any statistically significant difference between the post-test 
scores obtained by students exposed to the Wheatley model as compared to the scores obtained by 
students exposed to conventional instruction. The independent sample t-test was again used to find 
out if there were any statistically significant differences between high achievers and low achievers on 
the post-test scores when they were taught using the Wheatley model. The responses from the 
interviewees during the interview session were themed, transcribed, and analyzed to unearth the 
attitude of the students toward the Wheatley model. 

 
Results 

 
The first null hypothesis sought to indicate that no significant difference would be found 

between the means of the post-test scores obtained by students exposed to the Wheatley model as 
compared to the scores obtained by students exposed to conventional instruction. To test this 
hypothesis, the independent sample t-test showed that the pre-test scores of the experimental group 
and the control group were not statistically significant (t = 1.0441, df = 73, p =.299) as can be seen in 
Table 1.  
 
Table 1 
 
Independent Sample t-test Analysis of the Scores of the Experimental and Control Groups on the Pre-test and the Post-
test 
 

 Group N   Mean  SD  df  t-value p-value 

Group scores on 
the pretest 

Experimental 34 12.26 2.400 73 1.0441 .299 

 Control 41 12.90 2.827    
Group scores on 
the post-test 

Experimental  34 15.97 1.714 73 4.694 .000 

 Control  41 13.17 3.106    

Significance *p<0.05 
 
This indicates that there was no difference in performance between the two groups before the study 
was conducted.  The t-test results, however, showed a statistically significant difference between the 
two groups (t = 4.694, df = 73, p < .001) in post-test scores of the achievement test. This information 
is displayed in Table 2. The null hypothesis is therefore rejected, indicating that the Wheatley model 
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(experimental) group performed better with a Mean of 15.97 and SD of 1.714 than those taught by 
the conventional approach (control) group with a Mean of 13.17 and SD 3.106. The outcome indicates 
a large boost for the use of the Wheatley model in science classrooms.  

The second hypothesis, that there is no statistically significant difference between the post-
test scores of low achievers and high achievers when instructed through the Wheatley model, was 
tested with the independent sample t-test and the results are presented in Table 2.  
 
Table 2 
 
Results of the Independent Sample t-test Analysis on the Pretest Scores of High Achievers and Low Achievers in the 
Experimental Group 
 

Students score on Achievement level N  Mean  SD t df p-value  

Pretest  High achievers  23 12.26 1.287 -6.853 32 .000 

 Low achievers 11 9.18 1.079    

Posttest  High achievers 23 16.35 1.774 -2.308 32 .028 

 Low achievers 11 15.00 1.095    

  Significance *p<0.05 
 

At the onset of the research, there was a significant difference between students categorized as high 
achievers and those categorized as low achievers in favor of the high achievers, as can be seen in Table 
2. There is an indication that high achievers were performing better than low achievers before the 
study was carried out, with a higher mean score. On the post-test, the results from the independent 
sample t-test were still statistically significant (t = -2. 308, p = .028) on the post-test as can be seen in 
Table 2. This implies that when students are taught using the Wheatley model, high achievers will 
continue to perform better than low achievers. The null hypothesis of no significant difference 
between the performance of high achievers and low achievers, when taught using the Wheatley model, 
is therefore rejected. 

The research question sought to identify students' attitudes toward the teaching and learning 
strategy. Students' voices are very important in the introduction of any new strategy. Thus, the students 
who were instructed with the Wheatley model were interviewed to gauge their attitude toward the 
instructional approach. Since attitudes are a multidimensional construct with different sub-constructs 
(Kind et al., 2007; Osborne et al., 2003), students’ responses to the interviews were grouped into 
themes reflecting different aspects of their attitudes towards the teaching strategy. The themes that 
emerged from the interviews were excitement about the learning process, understanding of concepts, 
collaboration in the teaching process, and instructional time. 

Osborne et al. (2003) identified the 'enjoyment of the learning process' as an aspect of students' 
attitudes toward science. Learners draw on their prior experiences to learn new concepts therefore, if 
the learning situation is not exciting to them, the likelihood of engaging in further learning is 
minimized. The teaching and learning process should be enjoyable to the student, especially when a 
new teaching approach is being introduced. The majority of the students who were instructed with 
the Wheatley approach found it to be interesting and exciting. The students found the opportunity to 
explore and contribute to the learning process very exciting. Students’ views were typified by 
comments such as those presented as follows: 
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Student 1” I was very excited because the approach has helped some of us to contribute well 
in class and that was interesting”.  
Student 4 noted that the approach was very good "because you can contribute and share ideas 
in class".  
Student 7 “I was very happy because I had to search for information before presentation which 
was exciting because we don’t do that in class”. 
 
Teachers teach with the hope that their students will understand science concepts, which will 

lead to increased and improved achievement in the scores of students. ‘Achievement in science’ has 
therefore been identified as an aspect of the overall attitudes of students toward science (Osborne et 
al., 2003). The difference in the mean scores of the students in the Wheatley instructional group and 
students in the control group was statistically significant; nonetheless, it was necessary to gauge 
students’ views on their conceptual understanding when instructed with the Wheatley model. Students 
expressed how the approach enabled them to understand the concepts taught. “I understood the 
concepts very well,” Student 2. She continued that "learning with peers is much (sic) interesting and 
helps in understanding than with the teacher”. Student 3 sought to explain the reason why he 
understood the concepts by indicating that “we interacted and argued to come out with correct 
explanations”.  

A cardinal attribute of any constructivist approach is social interactions among students (Liang 
& Gabel, 2005). Since the Wheatley model is constructivist, the social interaction component needs 
to be realized. Students were asked to indicate their views on the interactions they had during the 
teaching and learning process. Students indicated that they were able to share ideas with their peers as 
they were exposed to the Wheatley model. Student 3 voiced that he was able to share ideas, “especially 
where terms were not clear to the group and wouldn’t have understood everything alone”. Student 6 
stated that “I shared ideas with colleagues, some words are different in spelling but the same in 
meaning” and that she wouldn’t have wished to learn genetics alone “because I would have had 
information in one direction”. Student 10 stated that “group learning is better than sitting in class to 
learn with a teacher”.  

The final aspect of student attitudes toward the approach used in this study was instructional 
time. It was prudent that students' views towards the duration of the learning process were gauged to 
alert teachers. Some of the students indicated that the time allocated to them to search for information 
related to the concepts and report back to the class was not enough. Student 1 said, “I wish we had 
more time.” Student 4 noted that “time was not enough”. Student 5, on his part, answered that the 
“time was not that adequate”.   Instructional time is a critical aspect of the variables that influence the 
outcome of the teaching and learning process. When students and teachers do not have enough time 
to facilitate the teaching and learning process, the most salient concepts are ignored or rushed through. 
The consequence of not either completing the content material or covering it superficially is that 
students’ conceptual understanding is likely to be impaired. 

 
Discussion 

 
The outcome of the study indicates that students taught through the Wheatley model 

performed better than those taught through the conventional approach. This result is similar to that 
obtained by Wheatley (1989), who found the approach superior to the conventional teaching strategy 
in terms of students’ academic achievement. Wheatley (1991) argued that students’ higher academic 
achievement could be because when teachers set activities for students, it forces the restructuring of 
ideas at a higher level than using the explain-practice paradigm. Kim (2005) found that the use of a 
constructivist approach improved students' achievement when compared to the conventional teaching 
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strategy. The various forms of the constructivist approaches have been found to generally have 
superior ability than the conventional approach in improving students’ conceptual understanding and 
overall learning outcomes (Liang & Gabel, 2005).   

Students’ responses during the interview session indicate a very high level of satisfaction and 
positive attitude towards the use of the Wheatley model. There was increased student participation, 
which brought out diverse views on the learning process. Wheatley (1989) noted that "knowledge is 
not passively received but is actively built up by the cognizing subject and to know is to understand 
in a manner which can be shared by others (p. 164)". The increased student participation and 
excitement can be attributed to the fact that students could challenge the views of their colleagues 
through collaborative efforts. This provided a conducive environment for them to learn, which was 
in line with suggestions made by Wheatley et al. (1995), indicating that students learn best when they 
are provided with the appropriate challenging problem in a collaborative environment. Liang and 
Gabel (2005) noted that when constructivist approaches are used in class, there is active participation 
by students during learning, and this elicits students’ interest in the content even when it seems difficult 
to them, and they will express themselves freely as they work in groups.  

The responses from the interviews revealed that the students not only enjoyed the teaching 
and learning process, but they also understood the concepts. Although the achievement test proved 
this assertion to be true, it was revealed that students articulated that they understood the concepts. 
Collaborative group learning seems to improve students' learning because opportunities are provided 
for students to contribute and learn through their colleagues’ views, which increases motivation (Yu-
Chien, 2008). Since learning is maximized in social interaction through individual construction 
(Bauersfeld, 1988), the students instructed with the Wheatley model had the opportunity to 
communicate and exchange ideas with their colleagues, which proved to be very positive for their 
learning. Social interaction within the classroom has been found to have a positive impact on students' 
achievements, attitudes, and motivation to learn (Liang & Gabel, 2005).  Although Liang and Gabel 
(2005) asserted that some students fail to express themselves and confront cognitive conflicts in 
constructivist classrooms, this research did not encounter such problems. The students in this study 
were able to express themselves by either disagreeing or agreeing with their colleagues without any 
difficulty. 

The downside of the approach was the seeming lack of time for students. Although the 
approach was to allow students to work at their own pace, they had to do so within the stipulated time 
allotted for the subject on the school's timetable. Airasian and Walsh (1997) noted that students will 
need different durations to construct meanings due to their different ability levels. Teachers are 
expected to provide adequate timeframes to cater to the uniqueness of each student. Unfortunately, 
durations for instructions are delineated by the school system, and therefore, each teacher has to use 
the time allocated to them. This makes the use of constructivist strategies laborious in certain 
circumstances. In this study, some students expected to use more time when they were instructed with 
the Wheatley model. 

 
Conclusion 

 
It can be concluded from the findings of this study that the use of the Wheatley model as a 

teaching and learning intervention is found to be more effective than the conventional approach of 
teaching in terms of student achievement. The Wheatley model, however, was not able to improve 
the performance of low achievers within the classroom. It can also be concluded that students’ attitude 
towards the Wheatley model as a teaching and learning strategy was positive and that the approach 
improved collaborative learning among students learning with the Wheatley model. 
 
Implication for Science Education 
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 The outcome of this research provides yet another constructivist approach that science 

teachers can use to enact scientific concepts to their students. The research has provided evidence that 
students taught using the Wheatley model are more likely to perform better than those using the 
conventional approach. Thus, since teachers are seeking various pedagogical ways through which to 
represent content knowledge to students to maximize learning with its associated improved academic 
performance, the Wheatley model can be used in science classrooms.  

The fact that students showed positive reactions to the approach provides great promise in 
the use of the Wheatley model in science classrooms. Such excitement shown towards the approach 
can ultimately affect the general attitude towards the concepts in particular and the subject in general. 
Thus, in an era of decreasing and declining interest in science, the use of the Wheatley model can 
provide an avenue through which students' interest in science can be whipped up. The emphasis on 
collaborative group work in the approach, which the students enjoyed and noted its influence on their 
learning, is a critical attribute that is very much needed in this generation. Thus, teachers can foster 
cooperation and emphasize collaborative attitudes and tendencies among their students using the 
Wheatley model. 
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ABSTRACT 
 
This study investigated learners' experiences and understanding of transformation geometry using 
two instructional strategies: Conventional Van Hiele Phased Instruction (CVHPI) and Technology-
Enhanced Van Hiele Phased Instruction (TVHPI), incorporating GeoGebra as a digital tool. 
Through semi-structured interviews, qualitative data were collected from 48 Senior Three secondary 
school learners who participated. Thematic analysis revealed that TVHPI, supported by GeoGebra, 
enhanced visual learning and dynamic interaction with geometric concepts, though learners faced 
technical challenges and limited practice time. CVHPI, while providing structured and step-by-step 
instruction, particularly benefited lower achievers but was less effective in addressing complex 
misunderstandings. As a result of this study, a Geometry Pedagogical Improvement Cycle (GeoPIC) 
framework was developed to improve the teaching and learning of geometry through a continuous 
and systematic process. The GeoPIC framework emphasizes adopting instructional strategies, 
tailoring them to individual needs, aligning with learner expectations, and incorporating feedback 
through a cyclical reflection and adjustment process. This study highlights the potential of 
combining technology-enhanced tools with conventional instruction and presents GeoPIC as a 
model for refining pedagogical approaches in geometry education. 

 
Keywords: Transformation Geometry, learners’ experiences, Van Hiele levels, Technology, GeoGebra, 
and GeoPIC. 

Introduction 
 

It has long been acknowledged that geometry instruction is an essential part of mathematics 
since it provides fundamental knowledge for various fields, such as computer science, engineering, 
and architecture (Çavuş & Deniz, 2022; Smith & Jones, 2020; Sunzuma & Maharaj, 2019). 
Transformation geometry is one of the numerous subfields of geometry that is particularly essential 
because of its real-world applications and ability to help develop spatial reasoning and problem-solving 
skills. However, despite its importance, transformation geometry can be complex for learners to 
understand using traditional teaching techniques due to the subject's abstract nature  (Bradley, 2005; 
Brijlall & Abakah, 2022; Ndungo et al., 2024). 
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In this regard, several studies have brought attention to the ongoing challenges that learners 
encounter when trying to grasp geometric concepts; these challenges frequently result in worry, 
anxiety, and eventually low academic achievement among learners. Consistently low achievement 
levels in geometry have been reported in countries including Indonesia, South Africa, Nigeria, 
Pakistan, Sri Lanka, and Italy (Ayebale et al., 2020; Ubi et al., 2018; Silmi Juman et al., 2022). These 
results highlight a widespread issue and critical need for educational interventions to raise geometry 
competency among learners (Ayebale et al., 2020). 

Ngirishi and Bansilal (2019) have observed that many learners cannot comprehend basic 
geometry concepts, analyze geometric properties, and recognize shapes. As a result, children 
frequently function at lower geometric thinking levels, which hinders their capacity to understand 
more complex ideas and progress to advanced levels of geometric thinking. Additionally, educators 
frequently use conventional teaching techniques, which might not be able to meet all of their students' 
learning demands (Kivkovich & Chis, 2016). This antiquated method may cause learners to disengage 
and impede their comprehension of fundamental geometric concepts. 

Erroneous beliefs and unfavorable perceptions regarding geometry intensify these difficulties. 
Many learners find it challenging to apply formulas and theorems, evaluate arguments, and 
comprehend geometric vocabulary, making geometry seem challenging and uninteresting (Kivkovich 
& Chis, 2016). Furthermore, learners frequently struggle with mathematical tools like compasses and 
protractors, leading to missed questions and further obstacles with problem-solving (Luneta, 2015). 
To tackle these problems, Moru et al. (2021) suggested that a concentrated effort must be made to 
improve conceptual understanding and implement effective instructional strategies. Enhancing 
geometry instruction can help learners better understand the topic and improve their general 
mathematical aptitude.  

Educational theorists have investigated various teaching strategies to improve learners' 
geometric thinking and overcome these issues. In particular, the Van Hiele Phased Instruction model 
is well known for its precise approach to teaching geometry. This model guides learners from 
fundamental shape recognition to more complex reasoning about geometric features and 
transformations by emphasizing the progression through five levels of geometric understanding. Even 
though Conventional Van Hiele Phased Instruction (CVHPI)  has proven to be successful in assisting 
learners in understanding, there is increasing interest in incorporating technology into this framework 
to improve learning results even more (Machisi & Feza, 2021; Zalman, 1982). 

Moreover, Technology-Enhanced Van Hiele Phased Instruction (TVHPI) using programs like 
GeoGebra allows learners to interact actively and visually with geometric concepts. With GeoGebra's 
interactive visualization features, learners can modify geometric shapes, see transformations in real 
time, and more concretely investigate the links between geometric objects. This method has the 
potential to close the knowledge gap between learners and abstract geometric concepts, increasing the 
accessibility and interest level of transformation geometry (Adelabu et al., 2022; Iannone & Miller, 
2019; Mthethwa et al., 2020; Vágová & Kmetová, 2019; Ndungo, 2024).  

Technology integration in education has expanded significantly, aligning with curriculum 
trends emphasizing active learning through interactive tools like tablets, smartphones, and specialized 
software (Diaz-Nunja et al., 2018). Learners with information and communication technology tools 
support their integration into mathematics education, providing more significant learning 
opportunities and fostering engagement and discovery-based learning (Mosese & Ogbonnaya, 2021). 
Technology integration in teaching geometry is further emphasized by Uganda's new lower secondary 
curriculum and other recent related studies (National Curriculum Development Center, 2019; Ndungo 
et al., 2025).  

Research highlights the benefits of GeoGebra in enhancing geometric reasoning and 
engagement. For example, Abdullah and Zakaria (2013) found that learners using dynamic software 
like GeoGebra made significant progress in geometric understanding compared to traditional 
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methods. Other studies indicate that GeoGebra supports visualization, spatial reasoning, and 
problem-solving, making mathematics more engaging and enjoyable (Mollakuqe et al., 2020; Celen, 
2020). It has also proven effective in teaching diverse topics, including circles, linear functions, 3D 
geometry, and trigonometry, helping learners explore mathematical concepts more thoroughly 
(Mudaly & Fletcher, 2019; Uwurukundo et al., 2021; Yildiz & Baltaci, 2016). Over the past few 
decades, there have been substantial changes in how geometry is taught. Increasingly, the emphasis is 
on developing conceptual understanding rather than rote memorization of processes (Clements & 
Sarama, 2021). Formal deduction has supported traditional geometry teaching methods, yet it is less 
successful for younger learners or those without prior knowledge of geometric ideas (Van de Walle et 
al., 2016). Early in life, developing spatial thinking and visualization abilities is crucial to comprehend 
more complex geometric ideas like transformation geometry (Sinclair & Bruce, 2015). 

However, despite these advancements, the literature reveals ongoing challenges in effectively 
teaching transformation geometry, particularly in contexts where learners struggle with abstract 
concepts like rotations, reflections, and dilations (Sunzuma & Maharaj, 2019). Silmi Juman et al. (2022) 
noted that applying geometric theorems and resolving complex problems are two significant obstacles 
that learners encounter when learning geometry. Their research demonstrated how activity-based 
learning strategies might help learners overcome these challenges and increase their comprehension 
and engagement. 

Similarly, the current study furthers this foundation by examining the contribution of teaching 
strategies such as CVHPI and TVHPI to improving learners' understanding of transformation 
geometry. This study investigates the additional effects of incorporating technology, notably 
GeoGebra, into the learning process, whereas Silmi Juman et al. (2022) concentrated on active learning 
methodologies. This study closes a significant knowledge gap by investigating the use of technology-
enhanced learning in the Ugandan environment. It offers insights into how such tools can address 
enduring difficulties in geometry teaching. 

 
Theoretical Underpinning 
 

This study is grounded in Cognitive Constructivism (Piaget), emphasizing active learning 
through progression in the Van Hiele Model of Geometric Thought. It integrates Social 
Constructivism (Vygotsky), highlighting the role of social interaction and teacher scaffolding within 
the Zone of Proximal Development (Allen, 2022). This study also incorporates Technology-Enhanced 
Learning, using GeoGebra to support interactive and visual learning in transformation geometry. The 
Van Hiele theory provides a framework for understanding the progression of geometric thinking 
through five levels: Visualization, Analysis, Abstraction, Deduction, and Rigor (Crowley, 1987; 
Vojkuvkova, 2012).  The theory further proposes a five-phased instructional approach to geometry 
that aligns with these cognitive stages, ensuring that teaching methods are suited to the learners' 
current level of understanding (Abdullah & Zakaria, 2013; Moru et al., 2021). 

 
Instructional Strategies 
 

This paper explores how the two instructional strategies, CVHPI and TVHPI, influence 
learners' experiences and understanding of transformation geometry. The following sections detail 
these instructional strategies. 

 
The Van Hiele’s Phased Instructional Strategy (CVHPI) 
 

The Van Hiele Phased Instruction (Conventional Van Hiele Phase Instruction in this study) 
is a structured framework for teaching geometry to support learners’ understanding and progression 
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through the Van Hiele levels. This model guides educators in designing lessons that help learners 
advance through increasingly complex levels of understanding with teacher support (Bonyah & 
Larbi, 2021; Machisi & Feza, 2021; Moru et al., 2021; Pujawan et al., 2020; Tahani, 2016). Figure 1 
shows the five phases of instruction according to the Van Hiele Phased Instruction model. 
 
Figure 1 
 
Showing the Five Van Hiele Phases of Instruction 
 

 

Figure 1 illustrates the five phases of the CVHPI: (1) Inquiry, where learners explore concepts; 
(2) Directed Orientation, focusing on exploration activities; (3) Explication, where learners articulate 
understanding; (4) Free Orientation, applying knowledge to complex problems; and (5) Integration, 
consolidating concepts for deeper comprehension. 
 
Technology-enhanced Van Hiele Phased Instructional Strategy (TVHPI) 

Building on the principles of CVHPI, TVHPI integrates technology into the learning process. 
The current study used GeoGebra to enhance visualization and interactivity in geometry lessons. 
TVHPI aims to engage learners more effectively by offering dynamic representations of geometric 
transformations, fostering an interactive and collaborative learning environment. By incorporating 
GeoGebra, TVHPI addresses diverse learning styles and aims to improve learner motivation and 
engagement in geometry education (Uwurukundo et al., 2021). Figure 2 shows a GeoGebra 
environment.  
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TOWARDS IMPROVED GEOMETRY INSTRUCTION 37 

Figure 2 
 
GeoGebra Environment: Showing How to Find the Angle of Rotation Given Two Rotated Shapes.  
 

 

 
Figure 2 depicts the GeoGebra interface with a GeoGebra-generated diagram for finding the 

rotation angle given two rotated shapes. The figure demonstrates line segments, perpendicular 
bisectors, and an angle of rotation of 900. GeoGebra tools allow users to dynamically adjust rotation 
angles, reflection lines, enlargement scale factors, and observe real-time changes, enhancing their 
understanding of transformations.  The interface has two interactive environments, the analytical and 
the graphical, that support the analytical and graphical analysis of geometric shapes and 
transformations. This enables learners to explore geometric transformations with precision and clarity. 

The key differences in how teachers can implement CVHPI and TVHPI lie in the mode of 
preparation, instruction, learner activities, visualization, feedback, and assessment in transformation 
geometry. For example, CVHPI relies on physical tools such as graph paper, mirrors, and rulers, 
requiring manual demonstrations and learner activities focused on drawing, plotting points, and 
performing calculations that lead to transformation. In contrast, TVHPI utilizes GeoGebra, enabling 
dynamic, real-time visualization of transformations. While CVHPI provides static visualization 
through blackboard drawings and physical manipulatives, TVHPI encourages interactive exploration. 
Feedback in CVHPI is given manually, with teachers reviewing learners’ work, whereas TVHPI 
delivers instant feedback via GeoGebra’s outputs. CVHPI operates at a teacher-controlled pace with 
repetitive exercises, while TVHPI supports self-paced learning through interactive tasks. Exploration 
in CVHPI is guided by limited opportunities for independent discovery, unlike TVHPI, which 
promotes learner experimentation and exploration of concepts. In CVHPI, the teacher’s role is 
directive, leading each step, while in TVHPI, the teacher acts as a facilitator. In CVHPI, assessment 
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focuses on procedural accuracy in written and drawn work, whereas TVHPI evaluates learners' ability 
to perform and interpret transformations digitally. 
 
Problem Statement 
 

The Van Hiele Phased Instruction model has been extensively explored and proven to be a 
practical approach to teaching geometry, particularly in fostering learners' geometric thinking (Machisi 
& Feza, 2021; Narh-kert & Sabtiwu, 2022; Office of the Prime Minister, 2020; Savec, 2019). However, 
learner engagement and conceptual understanding challenges persist despite its success, especially with 
complex transformations. In the Ugandan context, limited research has been conducted on the 
implementation and effectiveness of CVHPI, leaving a gap in understanding how this model functions 
within local educational environments. With the current trend in education emphasizing technology 
integration to enhance learning outcomes, there is a growing need to investigate how CVHPI can be 
improved by incorporating technology-enhanced tools like GeoGebra. While GeoGebra has shown 
potential to support visualization and engagement, its impact when combined with CVHPI has not 
been thoroughly examined in Uganda. This study seeks to address this gap by exploring how TVHPI 
can further support learners' learning, improve understanding, and help overcome the difficulties 
learners face in geometry. 
 
Research Questions 
 

The main research question is: How do learners' experiences and understanding of geometry 
differ between TVHPI and CVHPI?  

The research questions are: (1) what are the challenges and support needs associated with 
TVHPI and CVHPI? Furthermore, (2) what is the learners’ perception of the effectiveness of CVHPI 
and TVHPI in enhancing their understanding of transformation geometry?  

 
Methodology 

 
Research Design 
 

The research followed a quasi-experimental design, but this paper's primary focus is on the 
qualitative component of the main study. Semi-structured interviews were used to gather detailed data 
on learners' experiences with CVHPI and TVHPI. The qualitative design allowed an in-depth 
exploration of how each instructional strategy impacted the learning of transformation geometry. The 
study provided a robust framework for examining the differences in learners' experiences and 
engagement with transformation concepts by comparing two distinct instructional approaches within 
the same learning environment.   

 
Study Population, Sampling, and Sample 
 

The population for this qualitative component comprised Senior Three (S.3) learners attending 
secondary schools in both a rural and an urban district within Midwestern Uganda. The two districts 
(one rural and one urban) were selected for their contrasting settings and diversity in educational 
contexts. According to 2024 data from the respective education departments, the rural district had 98 
secondary schools with an average of 80 S.3 learners per school, yielding an estimated 7,680 learners. 
The urban district had 19 secondary schools with an average of 150 S.3 learners per school, resulting 
in approximately 2,850 students. This gave a combined population of 10,530 S.3 learners. The 
selection of S.3 learners was purposive due to their advanced engagement with the geometry 
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curriculum. By this level, learners have built foundational knowledge in geometric concepts and 
reasoning, making them suitable participants for examining the impact of instructional strategies on 
their understanding of transformation geometry. Their maturity and cognitive readiness further 
contributed to the study's feasibility and potential for insightful outcomes.  

The study employed a combination of matched and purposive sampling techniques. Initially, 
schools within the two districts were assessed against inclusion criteria, such as administrative 
flexibility, the availability of multiple S.3 streams, and access to computer laboratories. Matched triples 
were created to ensure comparability across selected schools, with one triple (three schools) chosen 
from each district. Two senior classes in each school were randomly assigned to experiment one 
(CVPHI) or two (TVHPI) groups. Thus, CVHPI and TVHPI were implemented in the same schools 
to control external variables. The critical difference was the instructional method: Group content 
sharing had no significant effect as the hands-on, technology-enhanced experience remained exclusive 
to TVHPI. Figure 3 shows the sampling procedures that were followed in the study.   
 
Figure 3  
 
Showing the Flow of the Sampling Procedures 
 

 
 

Initially, 651 learners from six schools participated in the broader quasi-experimental study 
(317 from rural schools and 334 from urban schools). Following attrition due to dropouts and 
incomplete data, 483 learners (245 in CVHPI, 238 in TVHPI) were retained for the final analysis of 
the learners’ Van Hiele levels (quantitative results on Van Hiele levels and attitudes are not within the 
scope of the current article). For the qualitative phase, a purposive subsample of 48 learners was drawn 
from the larger sample, selected based on their Van Hiele Levels. Ensuring the inclusion of diverse 
learners equally distributed across gender (24 males and 24 females), location (24 urban and 24 rural), 
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achievement level (24 lower achievers and 24 higher achievers), and instructional strategies (24 taught 
using TVHPI and 24 using CVHPI).  

 
Data Collection Instruments 
 

The primary data collection tool for the qualitative component was semi-structured interviews 
that allowed for flexibility in responses while maintaining a consistent structure, ensuring that key 
themes were addressed across all participants. The researchers designed the interview questions to 
explore four main areas: Learning Experience, Instructional Impact, Teaching Effectiveness, and 
Difficulties Encountered. This approach allowed learners to share their personal experiences in detail 
while ensuring that the researchers could gather comparable data across participants. 
 
Procedures 
 

The study began with a two-day training program to equip teachers with the necessary skills 
to deliver lessons using the TVHPI and CVHPI methods. The training covered the theoretical 
framework and practical application of the Van Hiele Phases of instruction, focusing on how to guide 
learners through different levels of geometric thinking. Teachers were also trained in using GeoGebra 
to teach transformation geometry, including how to construct geometric figures, apply 
transformations such as reflection, rotation, translation, and enlargement, and visualize geometric 
relationships dynamically. 

To ensure consistency in lesson delivery, the first author and the teachers collaboratively 
developed standardized lesson plans covering all learning outcomes specified for the intervention. 
These plans detailed instructional content, learner activities, and lesson organization, ensuring that all 
participating teachers followed a uniform approach. Following the training, pretests were administered 
to the participating learners to assess the learners’ baseline Van Hiele levels (achievement) and attitudes 
toward transformation geometry, so that subsequent changes could be attributed to the instructional 
methods used. 

The intervention covered six weeks, with both groups (CVPHI and TVHPI) receiving four 
lessons of 40 minutes per week, amounting to 24 lessons by the end of the intervention, delivered 
following the regular school timetable. To maintain consistency, the same teacher instructed both 
groups while the first author monitored and supported teachers during the intervention to ensure 
fidelity. The experiment two group (TVHPI) received lessons from the computer laboratory, using 
GeoGebra to facilitate interactive and dynamic learning experiences. The setup for GeoGebra was 
installed on all the computers in the school computer laboratories; the teachers used projectors to 
deliver lessons, while the learners used the computers to perform different transformations. This 
group's first lesson was designed to introduce learners to the GeoGebra software. In contrast, the 
experiment one group (CVHPI) was taught in regular classrooms without technology; the teacher used 
a chalkboard set to illustrate transformations, while the learners used graph books/papers and 
mathematical set instruments to perform transformations. 

At the end of the intervention, post-tests were administered to all learners to measure any 
changes in their attitudes and achievement following the six weeks of instruction. Finally, interviews 
were conducted one week after the intervention concluded. These interviews provided qualitative 
insights into learners' experiences and understanding of the geometry content, allowing the research 
team to gather in-depth information beyond the quantitative test results. The 30- to 45-minute 
interview sessions were held early in the mornings and the evenings to prevent interfering with regular 
lessons. The current paper presents only results from the qualitative part of the main study. 
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Data Analysis Methods 
 

The data were analyzed using thematic analysis, following the six-step process outlined by 
Lapolla (2020) and Meyer and Avery (2009). First, the researchers familiarized themselves with the 
data by reading and re-reading the transcripts, allowing them to gain an immersive understanding of 
the content. Following this, anonymization of data was done using a system of unique identifiers based 
on the learner's gender, achievement level, school location, and method of instruction (e.g., 
MHA/TVHPI/R1 for a male(M), higher achiever(H) from a rural school(R1), taught using TVHPI). 
With great care, each transcript was divided into more manageable, insightful segments, with each unit 
illustrating a distinct subject, concept, or experience related to the study questions. The process yielded 
438 different data units, allowing for a more concentrated and in-depth examination since each data 
unit represented a distinct component of the participants' responses, including their experiences with 
instructional strategies or the difficulties they had while learning geometry (Lapolla, 2020; Meyer & 
Avery, 2009). After the data was split and anonymized, it was organized, systematically coded, 
categorized, and thematically analyzed using Excel. Although our primary analysis is qualitative, 
utilizing pivot tables allowed for a comprehensive examination of the learners' experiences and the 
effectiveness of the instructional strategies by summarizing and highlighting links between themes, 
categories, and codes (Miller, 2014; Ngulube, 2015). This ensured a data-driven approach in drawing 
findings and offering recommendations by providing a concise summary of the data that served as a 
basis for examining the learners’ experience of instructional strategies and transformation geometry. 

 
Ethical Considerations 
 

The study was conducted under ethical approval from the Mbarara University of Science and 
Technology (MUST) Research Ethics Committee and the Uganda National Council for Science and 
Technology (approval numbers MUST-2024-1519 and SS2857ES). Informed consent was obtained 
from parents or guardians, and assent was sought from learners themselves. For participants aged 18 
and above, informed consent was obtained directly. All data were anonymized using unique identifiers 
to protect participants' privacy, and learners were informed of their right to withdraw from the study 
at any time.  

Several strategies were employed to ensure the trustworthiness of the findings. Credibility was 
enhanced through member checking, where participants were invited to review their transcripts and 
confirm the accuracy of their responses. This process ensured that the findings accurately reflected 
the participants’ experiences. Additionally, peer debriefing provided an external check on the data 
analysis process, as colleagues reviewed the coding and theme development to ensure the findings 
were consistent with the data. 

Dependability was maintained through an audit trail, documenting all decisions made during 
the research process, from data collection to analysis. This audit trail provides a clear record of the 
steps taken, allowing the research process to be replicated in future studies. Finally, confirmability was 
established through reflexivity, where the researchers engaged in self-reflection throughout the study 
to identify and mitigate any potential biases and control the researchers’ potential influence of 
professional backgrounds in mathematics education. This process helped identify potential biases and 
ensure they did not unduly influence the analysis. The researchers’ belief in the potential benefits of 
technology-enhanced learning, for example, was explicitly acknowledged as a possible source of bias, 
and steps were taken to remain objective throughout the study. Lastly, CVHPI learners were granted 
one week of access to GeoGebra after the study concluded, ensuring ethical fairness in technological 
exposure. 
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Results 
 

This study investigated the differences in learners' experiences and understanding of 
transformation geometry between two instructional strategies: CVHPI and TVHPI. In particular, it 
looked at how each approach affected learners' understanding of important geometric 
transformations, including rotations, reflections, and matrix transformations. In addition, the study 
sought to evaluate how well these strategies supported students' learning and dealt with issues that 
came up during teaching. 

The sample consisted of 48 learners, equally distributed across gender, location, achievement 
level, and instructional strategies. Before analysis, the data were anonymized, with each learner 
assigned a symbol representing their contextual characteristics, such as gender, location, achievement 
level, and instructional strategy, rather than using names or identification numbers. This ensured 
confidentiality while maintaining relevant context for analysis. The data was organized in Excel and 
thematically analyzed. Two key themes emerged from the learners' experiences with CVHPI and 
TVHPI in learning transformation geometry. 
 
Theme 1: Challenges and Support Needs 
 

This theme explores learners' barriers to understanding geometry and the interventions 
required to address them. It emerges from three categories: Learning Challenges and Obstacles, 
Metacognition and Self-Regulated Learning, and External Learning Support. These categories highlight the 
interplay between procedural and conceptual difficulties, the role of self-regulation and reflection, and 
the importance of external assistance. Learning challenges often arise from difficulties in following 
steps, grasping abstract concepts, or accessing adequate resources. Metacognition involves learners’ 
ability to focus, reflect on progress, and maintain motivation, which is influenced by instructional 
methods. External learning support emphasizes the need for guidance, tailored interventions, and 
structured practice to help learners navigate these challenges effectively. The theme highlights the 
complexity of overcoming learning barriers and the critical role of internal strategies and external 
resources. 
 
Theme 2: Instructional Effectiveness and Learner Satisfaction 
 

This theme captures how instructional methods impact learning outcomes and align with 
learners’ needs. It evolves from five categories: Instructional Support and Guidance, Learning and 
Differentiated Instruction, Practical Learning and Reinforcement through Practice, Role of Instructional Strategy in 
Learning, and Learners’ Expectations. These categories highlight the importance of effective guidance, 
tailored instruction, practical application, and structured strategies in facilitating understanding. 
Instructional methods aim to resolve misunderstandings, enhance visual learning, and provide 
opportunities for step-by-step reinforcement. Additionally, aligning instructional approaches with 
learners’ expectations is essential for fostering engagement and satisfaction. This theme emphasizes 
the interconnectedness of instructional quality, strategy, and learner perceptions in shaping meaningful 
learning experiences in geometry. The detailed findings for each of these themes are discussed in the 
preceding sections.  

 
The Challenges and Support Needs Associated With TVHPI and CVHPI 
 

This section looks at the challenges and support requirements associated with CVHPI and 
TVHPI. It draws attention to learners' challenges in understanding geometry and the help needed to 
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improve their learning through hands-on training and individualized guidance. Table 1 illustrates the 
occurrence of different codes in the data for each category in theme one. 
 
Table 1  
 
Showing a Count of Codes and Categories (Theme 1) 
 
Row Labels TVHPI CVHPI Total 
Challenges and Support Needs 77 89 166 
Learning Challenges and Obstacles 49 60 109 
Challenges in Seeking Help 1  1 
Difficulty Following Steps  3 3 
Struggling with Geometry Concepts 16 38 54 
Technical and Resource Challenges 32 19 51 
Metacognition and Self-Regulated Learning 2 9 11 
Concentration  2  2 
Interest in Learning Geometry Concepts   2 2 
Self-Reflection   7 7 
External Learning Support  26 20 46 
Need for Extensive Use of GeoGebra for Mastery 6  6 
Need for Individualized Support and Time for Practice  20 20 40 
 
Learning Challenges and Obstacles 
 

Based on the data values in Table 2, learning challenges and obstacles were the most common 
experiences for learners in both instructional techniques, with 109 occurrences (49 in TVHPI and 60 
in CVHPI). All learners encountered different challenges while trying to grasp transformation 
geometry. These challenges were classified as struggling with geometry concepts, technical and resource challenges, 
and difficulties seeking help during the lesson. 

Struggling with geometry concepts was more pronounced in the CVHPI group, with 38 
responses mentioning this difficulty compared to 16 in the TVHPI group. For example, one TVHPI 
participant noted: "Reflections were easier for me, but when we started working with enlargements, I 
got lost because I did not understand the scale factors" (FLA/TVHPI/R2). Similarly, a CVHPI 
participant shared: "But rotations were hard for me when we had to apply them on the grid. More 
examples would have helped" (FHA/VHPI/U2). The more significant number of learners struggling 
with geometry in the CVHPI group suggests that traditional methods of instruction are less effective 
for some learners. The fact that participants in the TVHPI group had this code indicates that learners 
who used this method had comparable difficulties, although less common than in the CVHPI group. 
Technical and resource-related difficulties could cause difficulties in understanding geometric ideas, 
since most of the learners in the TVHPI group reported this challenge compared to the CVHPI group. 
For example, a TVHPI participant said, "The computer was slow, and the power went out while the 
teacher was explaining rotations, so I still found matrix transformations and rotations difficult" 
(FLA/TVHPI/R1). 

The differences in the technical and resource issues presented by the two instructional 
strategies highlight the direct impact that the mode of instruction has on the kinds of problems that 
learners encounter. Moreover, in some cases, learners shun away from seeking help when they 
encounter challenges. For example, one participant from the TVHPI group noted, "I got lost a lot 
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and didn't ask for help enough" (FLA/TVHPI/U1), indicating that they had trouble asking for 
assistance during classes. Even while this problem was only occasionally mentioned, it brings to light 
a particular difficulty with technology use because learners can be less inclined to ask for help when 
using new digital tools. While not noticed in the CVHPI group, this issue highlights a possible 
disadvantage of technology-enhanced instruction: learners may experience a sense of isolation in their 
learning. This suggests that educators should create a setting where learners feel free to seek assistance, 
and encourage peer-to-peer interaction and group work, more than individualized learning. 

The aforementioned difficulties highlight the necessity of metacognitive and self-regulated 
learning, which several learners still identified as areas of difficulty. These abilities (discussed in the 
following subsection) are essential for empowering learners to take charge of their education and 
identify when they need help, particularly in settings where technology or teaching strategies present 
extra challenges.  

 
Metacognition and Self-Regulated Learning 
 

Although fewer instances were recorded in the Metacognition and Self-Regulated Learning 
category (2 in TVHPI and 8 in CVHPI), this area shows how learners used self-regulation strategies 
to deal with their learning difficulties. These techniques played a crucial role in how learners overcame 
their learning challenges. The learners reported techniques such as concentration, forging an interest in 
learning, and self-reflection after the lessons.  

Remarkably, a few participants in the TVHPI group (2 instances) stated that concentration or 
focus was necessary to get beyond obstacles when learning geometry. Learners could concentrate 
better on activities that improved their comprehension of the subject matter. “The shapes moved, but 
it did not always make sense to me. I think the learners who did better spent more time on the 
computer and paid more attention” (FLA/TVHPI/U1), a participant from the TVHPI group 
reported. This implies that technology can improve cognitive engagement, which helps learners 
understand complex geometric transformations more fully. It should be noted that this focus could 
be influenced by the learners' level of interest in what is being learned. Relatedly, two of the CVHPI 
group's participants stated that they overcame challenges because they were motivated to master 
geometry concepts.  

Accordingly, learners in the CVHPI group more frequently mentioned self-reflection. One 
learner explained: "The teacher explained it, but sometimes I did not ask for more help, but after class, 
I would think about what we did, and that helped me understand better." (MLA/VHPI/R1). The 
reliance on self-reflection in CVHPI suggests that learners in traditional instructional settings often 
need to take more initiative in their learning process, potentially due to the lack of interactive feedback 
mechanisms available in technology-enhanced settings.  
 
External Learning Support  
 

The different types of help that learners thought they required to successfully navigate their 
learning experiences are included in this subsection. With a total of 46 instances (26 in TVHPI and 20 
in CVHPI), it was evident that learners in both instructional modalities needed extra support to get 
beyond their obstacles. The categories of help that emerged from the participants included extensive use 
of GeoGebra, Need for individualized support from the teacher, and allowed time for continuous practice. Primarily, 
learners in the TVHPI group (six instances) underlined that knowledge of transformation geometry 
requires considerable use of GeoGebra. They admitted that even while the program made learning 
easier, proficiency still required a lot of practice as one of the participants stated: “More time on the 
computer would have helped” (FLA/TVHPI/R3). This emphasizes how crucial it is to practice 
technology on a regular and consistent basis to improve conceptual understanding 
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Moreover, this emphasizes the ongoing need for individualized support and increased practice 
time, since learners need both unique direction and chances to solidify their understanding of the 
subject matter. For example, with an equal frequency of 20 occurrences in each group, it was clear 
that both learners needed time for practice and specialized (external) support. A learner from the 
TVHPI group and CVHPI group respectively commented: “I think it would help if we had more time 
on the computer and more help from the teacher during the hard parts” (FLA/TVHPI/R1). "If the 
teacher gave me more time on that, it would have been better for me” (MHA/VHPI/U2). The fact 
that both groups have this desire emphasizes the shortcomings of both instructional strategies.  

 
Instructional Effectiveness and Learner Satisfaction. 

 
This theme looks at five emerging categories: beginning with the Role of Instructional Strategies in 

Learning, which forms the foundation for Instructional Support and Guidance. This support is then adapted 
through Personalized Learning and Differentiated Instruction, ensuring learners receive targeted help. 
Learners engage in Practical Learning and Reinforcement through this tailored approach, applying 
their knowledge in hands-on activities. Ultimately, the effectiveness of these methods is assessed 
against Learners' Expectations, evaluating how well the instructional strategies met their expected 
learning outcomes. These categories demonstrate the different experiences that the two groups had 
and show how each teaching strategy impacted learners' overall satisfaction and helped them learn. 
The occurrence of different codes in the data for each category and code is illustrated in Table 2.  
 
Table 2 
 
Showing a Count of Codes, and Categories (Theme 2)  
 
Row Labels TVHPI CVHPI Total 
Instructional Effectiveness and Learner Satisfaction 147 125 272 
Role of Instructional Strategy in Learning 91 47 138 
Ability to Resolve misunderstanding  40 14 54 
Enhanced Visual Learning  44 8 52 
Step-by-Step Learning Approach 7 24 31 
Instructional support and Guidance 8 2 10 
Benefits of Multiple Explanations  2 2 
Desire for More Time with GeoGebra 8  8 
Personalized Learning and Differentiated Instruction 2 6 8 
Enhanced Visual Learning  1  1 
Importance of Prior Knowledge  5 5 
Repeated Explanation and Personal Attention 1 2 3 
Practical Learning and Reinforcement  21 46 67 
Understanding through Examples 13 31 44 
Improvement Through Practice 8 15 23 
Learners expectations  25 24 49 
The method didn’t meet most of the learner's expectations   13 13 
The method met most of the  learner's expectations  25 11 36 
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Role of Instructional Strategy in Learning 
 
A total of 138 responses emerged in this category (91 in TVHPI and 47 in CVHPI); it is clear 

that the instructional strategy played a significant role in shaping learners’ learning outcomes and their 
ability to engage with geometry concepts. The roles of instructional strategies that emerged under this 
category are the ability to resolve misunderstandings, enhanced visual learning, and a step-by-step learning approach. 
Learners in the TVHPI group overwhelmingly reported that the instructional strategy helped them 
resolve misunderstandings. A TVHPI learner shared: "Using GeoGebra helped me a lot because I 
could see the shapes change right in front of me. I understood what I had misunderstood” 
(FHA/TVHPI/R1). 

In contrast, fewer learners in the CVHPI group mentioned resolving misunderstandings 
through the instructional strategy. One CVHPI learner said: "Reflections were easier for me, but when 
we moved on to rotations, they were confusing at first, but after following the steps I saw some light” 
(FLA/VHPI/R3). This finding suggests that the interactive and visual nature of TVHPI, particularly 
through the use of GeoGebra, allowed learners to identify and correct their mistakes more easily 
compared to CVHPI. 

In support of this result, the role of visual learning was significantly more prominent in 
TVHPI, with 44 occurrences compared to eight in CVHPI. A TVHPI learner remarked: "GeoGebra 
made a big difference for me because I could see how the shapes were changing, (FHA/TVHPI/R1). 
Meanwhile, CVHPI learners noted the limitations of traditional visual aids, with one learner 
explaining: "I remember one lesson where the teacher showed us how to use symmetry, and that 
helped me” (FHA/VHPI/U3). The emphasis on visual learning in TVHPI highlights the advantage 
of technology in providing dynamic, real-time demonstrations of geometric concepts. The use of 
visual aids in TVHPI improved understanding through dynamic visualization; however, in CVHPI, 
the lack of visual aids necessitated a planned, systematic progression to lead learners through each 
concept and guarantee mastery at every level. The step-by-step learning approach was more commonly 
reported by CVHPI learners, with 24 occurrences compared to seven in TVHPI.  The approach 
employed in CVHPI emphasizes the significance of Instructional Support and Guidance in fostering 
learner confidence through its organized and progressive approach. The continuous need for teacher 
support was evident in both CVHPI and TVHPI, as the former relied on direct teacher interaction 
and the latter needed explicit advice to supplement its visual aids. 

 
Instructional Support and Guidance 
 

Instructional support and guidance played a critical role in helping learners navigate their 
learning experiences. With 10 occurrences in this category (eight in TVHPI and two in CVHPI), the 
level of support provided was a key factor in shaping learners' perceptions of the effectiveness of their 
instructional strategy. This category was built on two codes: desire for more time with GeoGebra and benefits 
of multiple explanations.  

To improve their understanding, learners in the TVHPI group frequently stated that they 
needed more time to spend with GeoGebra. This wish emphasizes how beneficial technology can be 
to education, especially when learners feel sufficiently supported. However, it also implies that the 
amount of time allotted to using these tools would not have been enough to achieve mastery, which 
might have reduced overall satisfaction with the teaching approach. For example, one learner 
remarked: "I think I needed more time with GeoGebra to understand” (MLA/TVHPI/R2). This 
result is consistent with the previous theme on Challenges and Support Needs, where learners stressed 
that to improve understanding, they needed to practice GeoGebra a lot.   

While learners in the TVHPI group stated that more time spent using GeoGebra improved 
their comprehension, those in the CVHPI group highlighted that teacher explanations and multiple 
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examples were crucial to their improvement, emphasizing the unique advantages of each instructional 
strategy in promoting learner learning. For example, a participant in the CVHPI group said, "The way 
the teacher taught us helped me get better because we practiced a lot" (MHA/VHPI/U2). Learners 
in this group also emphasized the advantages of hearing repeated explanations. Learners' overall 
pleasure with the method was probably influenced by the CVHPI instructor's ability to tackle a single 
concept from multiple perspectives. This is related to the notion that, although TVHPI is superior in 
visual and interactive learning, the instructor's flexibility in providing various forms of assistance 
makes CVHPI so strong. While both groups gained from their different teaching strategies, CVHPI 
learners from teacher explanations and various examples, and TVHPI learners from more time spent 
with GeoGebra, TVHPI had a greater capacity for encouraging independent learning.  

 
Personalized Learning and Differentiated Instruction 
 

This category highlights the importance of adapting instruction to meet the needs of individual 
learners. With eight occurrences overall (2 in TVHPI and 7 in CVHPI), it is clear that CVHPI provided 
more opportunities for personalized and differentiated learning. Repeated explanations, personal attention, 
and the importance of prior knowledge were the primary focus of this category. A CVHPI learner said that 
direct teacher intervention helped clear up uncertainty regarding rotation. On the other hand, it seems 
that CVHPI provides more regular chances for this customized advice. This result supports the idea 
of learner assistance more broadly by demonstrating that although technology like GeoGebra can 
enhance understanding, it cannot wholly replace one-on-one instructor interaction in helping learners 
learn complete ideas. This dependence on human attention and repeated explanation is also related to 
the importance of prior knowledge, since learners frequently need extra help to fill in the gaps between 
what they already know and new geometric concepts.  

 
Practical Learning and Reinforcement 
 

Practical learning and reinforcement were significant factors in shaping students' learning 
experiences and their overall satisfaction with the instructional strategies. With 67 occurrences (21 in 
TVHPI and 46 in CVHPI), both groups heavily emphasized this category, though it was more 
prominent in CVHPI. The two principal codes that emerged under this category were the role of examples 
and practices in enhancing understanding. Examples were critical to enhancing learners' understanding, with 
CVHPI learners reporting this benefit more frequently. The higher frequency of occurrences in 
CVHPI suggests that examples may have a more substantial impact on reinforcing understanding, 
possibly due to the nature of the instruction. However, the TVHPI method also proved effective in 
using examples, particularly through visual and interactive demonstrations provided by GeoGebra. 
This finding reinforces the idea that both instructional strategies offer valuable forms of 
reinforcement, though in different ways, and connect to the larger discussion of instructional support 
and guidance. All the instructional strategies were equally represented in the code “improvement 
through practice”, with eight occurrences each. A learner from the TVHPI group remarked: "I 
thought it would be confusing, but GeoGebra made everything clearer for me, especially with 
enlargements after practicing” (FHA/TVHPI/U3). Similarly, a CVHPI learner explained: "I found 
reflections easier because we practiced them a lot” (MLA/VHPI/R3). The equal emphasis on practice 
across both instructional strategies emphasizes the importance of consistent reinforcement in 
mastering geometry concepts. Whether through digital tools or traditional exercises, learners 
recognized that repeated practice was key to their improvement. 
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Learners' Expectations 
 

This examines how the instructional strategies and learners' expectations for learning geometry 
correspond. Throughout 49 instances (25 in TVHPI and 24 in CVHPI), learners from the two groups 
expressed differing opinions about how well the instructional strategies fulfilled their expectations for 
their learning. The surfaced codes represent the different experiences and satisfaction with the 
instruction strategies, including the Method Met Most of the Learners' Expectations, and the Method Did Not 
Meet Most of the Learners' Expectations. 

All 25 mentions from the TVHPI group stressed that the instructional strategy met the 
learners’ expectations compared to 13 out of 24 from the CVHPI. For example, one TVHPI learner 
explained: "I did not think I would enjoy using the computer for geometry, but I was surprised at how 
much fun it was” FHA/TVHPI/R2). 

Meanwhile, a CVHPI learner noted: "I thought reflections would be the most confusing part, 
but I was surprised at how fast I picked them up” (FHA/VHPI/U1). The higher satisfaction reported 
by TVHPI learners suggests that the use of technology supported learners’ understanding and aligned 
more closely with their expectations for a modern, interactive learning experience. This finding 
connects back to the earlier codes related to visual learning and the ability to resolve 
misunderstandings, which likely contributed to learners feeling that their expectations were met. 
However, the CVHPI method, while effective in many ways, may have fallen short for learners seeking 
more dynamic or interactive elements in their learning experience. However, even if CVHPI was 
effective in many ways, learners who had hoped for a more engaged or participatory approach might 
not have been delighted. This led to multiple reports from the CVHPI group saying that the procedure 
fell short of what they had anticipated. One CVHPI learner said, "I did not think I would be so 
confused with symmetry. I expected it to be simpler, but I kept making mistakes when it came to 
figuring out where the lines went. It surprised me how much more attention I needed to pay” 
(FLA/VHPI/U1). This narrative reveals that learners in CVHPI did not receive the expected 
experiences and understanding of transformation geometry, resonating from the challenges faced. 

 
Discussion of the Findings 

 
This discussion addresses the research questions by analyzing the challenges and support 

needs associated with TVHPI and CVHPI, as well as learners’ perceptions of the effectiveness of 
these methods in enhancing their understanding of transformation geometry. 

 
Challenges and Support Needs Associated with TVHPI and CVHPI  
 

The findings reveal that both TVHPI and CVHPI present unique challenges, though the 
nature of these challenges varies. Consistent with prior research, learners in the CVHPI group 
reported struggling more with conceptual understanding, particularly for abstract transformations like 
rotations and scaling. This aligns with studies emphasizing the limitations of traditional instruction in 
fostering geometric reasoning without dynamic visual aids (Açıkgül, 2022). In contrast, TVHPI 
learners highlighted challenges related to technical and resource constraints, such as unreliable 
electricity and insufficient exposure to GeoGebra, supporting literature that emphasizes the need for 
robust infrastructure in technology-enhanced learning (Adelabu et al., 2022; Afshari et al., 2009; 
Roxana, 2019). This is consistent with studies on the digital divide, which argue that disparities in 
access to technology can exacerbate educational inequalities (Moore et al., 2018). While TVHPI offers 
significant pedagogical advantages, its success is contingent on addressing these infrastructural 
challenges, particularly in under-resourced contexts. 
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However, learners in the TVHPI group frequently mentioned the benefits of enhanced visual 
learning. The ability to manipulate geometric shapes through GeoGebra allowed learners to move 
through the Van Hiele levels more effectively, as they could simultaneously engage with the conceptual 
and procedural aspects of transformations. This aligns with cognitive load theory (Plass et al., 2010), 
which suggests that reducing the cognitive demands associated with abstract problem-solving tasks 
(such as visualizing geometric transformations) allows learners to focus more on understanding the 
underlying principles. 

Consequently, learners in both groups expressed a need for individualized support and 
extended practice, emphasizing the universal role of teacher scaffolding and repetition in mastering 
geometry concepts. Interestingly, TVHPI learners noted a reluctance to seek help, potentially due to 
a sense of isolation when engaging with technology. This finding contrasts with studies suggesting 
technology fosters collaboration and engagement (Zheng et al., 2022), highlighting the importance of 
creating supportive environments in technology-enhanced instruction. 

 
Learners’ Perception of Effectiveness of TVHPI and CVHPI in Enhancing Understanding  
 

Regarding perceptions of instructional effectiveness, TVHPI was consistently praised for its 
ability to enhance conceptual understanding through dynamic visualization. Learners frequently noted 
that GeoGebra allowed them to "see" transformations in real-time, facilitating deeper comprehension 
of abstract concepts like rotations and reflections. This aligns with Sunzuma (2023) and  Wachira and 
Keengwe (2011) findings on the power of technology to make abstract geometric concepts more 
accessible. In contrast, CVHPI learners benefited more from the structured nature of conventional 
instruction, which helped reinforce procedural mastery. This is consistent with research suggesting 
that conventional methods remain effective for learners who rely heavily on explicit guidance and the 
fact that the method uses the structured way of teaching emphasized by Van Hiele (Bonyah & Larbi, 
2021; Hattie, 2009; Machisi & Feza, 2021; Moru et al., 2021; Tahani, 2016). 

However, satisfaction levels differed between the groups. TVHPI learners expressed greater 
alignment between their expectations and instructional outcomes, likely due to the engaging and 
interactive nature of the technology. This finding supports literature highlighting the growing 
preference for technology in modern classrooms (Adelabu et al., 2022; Afshari et al., 2009). 
Conversely, CVHPI learners valued the multiple explanations and personalized attention provided by 
their teachers, suggesting that conventional methods retain strengths in areas where technology cannot 
fully replicate human interaction (Ardeleanu, 2019; Lessani et al., 2017; Roxana, 2019; Tularam, 2018). 

Despite these positive perceptions, both groups emphasized the importance of external 
support, particularly through teacher guidance and extended practice opportunities. The shared 
reliance on teacher intervention underscores the complementarity of instructional strategies, with 
technology enhancing conceptual understanding and conventional methods reinforcing procedural 
skills. 

 
Synthesis of Findings  
 

The findings reveal that while TVHPI addresses conceptual challenges effectively, it 
introduces technical barriers that require careful planning and support. Conversely, CVHPI fosters 
procedural understanding and self-regulation but may fall short of meeting learners' expectations and 
seeking interactive experiences. These insights suggest that neither method is inherently superior. 
Instead, their effectiveness depends on aligning instructional strategies with learners’ needs and 
preferences. As a result, the study suggests a Geometry Pedagogical Improvement Cycle (GeoPIC-
Framework) that provides a structured pathway for learners to advance from basic shape recognition 
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to abstract geometric reasoning, ensuring a seamless transition through Van Hiele’s levels of geometric 
thinking. This cycle is illustrated in Figure 4.  

The cycle begins with adopting an instructional strategy that aligns with the learners’ abilities 
and learning objectives/outcomes. Teachers must determine whether to employ traditional hands-on 
tools like graph paper, mirrors, and rulers or to enhance learning through technology using dynamic 
visualization platforms such as GeoGebra. Once a strategy is in place, the focus shifts to aligning 
expectations, where learners are introduced to the structure of their learning journey; understanding 
what they will learn, how they will engage with geometric transformations, and how their progress will 
be assessed. This alignment ensures that learners are not merely following procedures but actively 
constructing their understanding of geometric concepts. 

 
Figure 4 
 
Showing the Geometry Pedagogical Improvement Cycle (GeoPIC-Framework) 

 

 
 

 
With expectations set, the next critical step is diagnosing learning challenges to establish each 

learner’s entry point in the learning process. Through pre-tests, discussions, and observation of learner 
interactions, educators identify misconceptions and conceptual gaps that may hinder progress. This 
diagnosis is essential in structuring subsequent instruction to address weaknesses while reinforcing 
foundational geometric principles. Once challenges are identified, the cycle moves to reflection, where 
learners and teachers critically analyze learning experiences. Learners engage in self-explanation and 
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problem analysis, strengthening their metacognitive awareness and helping them transition from visual 
recognition to logical deduction. Meanwhile, teachers assess the effectiveness of their instructional 
approach, refining strategies to improve conceptual clarity and engagement. 

Following reflection, learning is consolidated through practice and application. Learners apply 
their understanding in guided activities, structured problem-solving tasks, and real-world scenarios 
using manual drawing techniques and interactive digital explorations. Technology, particularly 
GeoGebra, is crucial in reinforcing geometric transformations by allowing learners to manipulate 
figures dynamically, observe patterns, and test conjectures. This phase cements knowledge, enabling 
learners to analyze and apply transformations confidently rather than memorize rules. 

However, learning is not static. As learners engage in practice, adjustments must be made to 
enhance instruction further. Teachers evaluate progress and refine their approaches, modifying 
teaching pace, instructional materials, and learner support strategies to better align with evolving 
needs. This continuous refinement ensures that learners do not stagnate but advance systematically 
through increasingly complex geometric reasoning tasks. 

The GeoPIC framework is not a linear process but an ongoing cycle, looping back to adoption 
and realignment as new insights emerge. Each iteration strengthens learners’ understanding, moving 
them from basic spatial visualization to higher-order geometric reasoning. By integrating traditional 
instructional techniques with dynamic digital tools, this framework provides an adaptive, research-
driven approach to teaching geometry, ensuring that learners not only master transformations but also 
develop the ability to think, reason, and engage with geometric concepts at a deeper level. The iterative 
nature of this cycle ensures that learning is continuous, responsive, and progressively builds toward 
geometric mastery, equipping learners with the essential skills to analyze spatial relationships, apply 
logical reasoning, and connect geometric principles to real-world contexts. 

The continuous feedback loop also ensures improvement in teaching effectiveness and student 
learning outcomes. GeoPIC is based on key educational theories, including the Van Hiele Theory of 
Geometric Thinking, Differentiated Instruction, and constructivist principles. It emphasizes tailoring 
strategies to learners' needs, active learning, and continuous reflection; Crowley, 1987; Vojkuvkova, 
2012). Formative assessment guides the cycle’s feedback stages, while its cyclical process mirrors the 
Plan-Do-Check-Act model for continuous teaching improvement (Pratik & Vivek, 2017). 

 
Limitations of the Study 
 

The study’s sample size (48 Senior Three learners from six Ugandan schools) limits 
generalizability, as findings may not fully apply to other grade levels. While Senior Three was chosen 
due to its alignment with transformation geometry content, future studies could explore the 
effectiveness of TVHPI in other classes to assess broader applicability. Additionally, although teachers 
were trained and standardized lesson plans were developed, variations in teaching styles and 
instructional delivery were inevitable and may have influenced some results. Despite these limitations, 
the study’s qualitative depth, diverse school selection, and rigorous methodology ensure credible 
insights. 
 

Conclusions and Recommendations 
 

The study identified challenges and support needs associated with TVHPI, particularly its 
reliance on digital tools, which posed obstacles such as electricity instability and limited device access 
in low-resource settings. Since CVHPI is embedded within TVHPI, it remains a viable alternative 
when technology is unavailable, ensuring learners experience Van Hiele Phased Instruction through 
traditional tools. To address these challenges, a hybrid approach integrating offline GeoGebra use and 
paper-based simulations could enhance accessibility. Additionally, while TVHPI promotes individual 
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exploration, some learners reported feeling isolated compared to the collaborative nature of CVHPI. 
Peer-to-peer interactions and structured group tasks within TVHPI would help maintain learner 
engagement while maximizing technology’s benefits. 

Regarding learners' perceptions of effectiveness, TVHPI enhanced understanding of 
transformation geometry by providing dynamic visualization, especially for rotations and reflections, 
allowing learners to manipulate shapes and observe transformations in real time. Within TVHPI, 
CVHPI remained essential for structured reinforcement, supporting procedural accuracy through 
manual plotting, mirrors, and graph paper. While TVHPI strengthened conceptual understanding, 
CVHPI ensured learners developed procedural fluency, highlighting the need for a balanced 
integration of both approaches to optimize learning in transformation geometry. 

Schools should prioritize TVHPI as the primary instructional strategy, leveraging its interactive 
and visual capabilities while retaining CVHPI’s structured support for personalized learning. Teachers 
should receive comprehensive training on GeoGebra and digital tools, integrated into continuous 
professional development with hands-on practice. Addressing technical challenges, such as power 
reliability and device access, is crucial for seamless integration. GeoGebra can be used as a dynamic 
board to enhance visualization where devices are limited. A hybrid approach would optimize learner 
learning by combining TVHPI’s visualization strengths with CVHPI’s structured guidance. The 
GeoPIC framework should guide continuous instructional improvements. 

At the policy level, teacher training should transition from CVHPI to TVHPI, ensuring 
educators develop strong foundational skills before integrating technology. Policymakers should 
invest in affordable digital solutions and offline learning resources, expanding access in low-resource 
settings. Hybrid models integrating technology and traditional tools should be supported to ensure 
inclusive learning environments. 

Further research should explore TVHPI’s effectiveness across more extensive and diverse 
samples. Additionally, the practicality of the GeoPIC framework should be assessed to refine 
instructional strategies. Longitudinal studies should evaluate knowledge retention and higher-order 
reasoning skills, ensuring sustainable benefits of TVHPI in mathematics education. 

 
 
Contribution: By examining the Van Hiele Phased Instruction (VHPI) model in Uganda and 
investigating the effectiveness of Technology-Enhanced Van Hiele Phased Instruction (TVHPI) with 
the integration of GeoGebra, this study enhances the instruction of mathematics. This research sheds 
light on how different approaches to instruction affect the learner's understanding of transformation 
geometry and tries to fill the gap in the literature. In addition to improving geometry instruction, this 
study presents the Geometry Pedagogical Improvement Cycle (GeoPIC), a framework that can 
address learner obstacles and improve teaching strategies.  
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ABSTRACT 
 
With a focus on related rates problems, the present study reports on quantitative and covariational 
reasoning opportunities provided by five widely used calculus textbooks in the United States. 
There are three major results from this study. First, quantitative reasoning opportunities are 
plentiful, while covariational reasoning opportunities are scarce in all the textbooks, respectively. 
Second, there is a severe shortage of related rates problems that require more than recalling 
geometric formulas to mathematize. Third, opportunities promoting the use of diagrams to 
support students’ quantitative reasoning when solving related rates problems are minimal in the 
practice problems provided in the five textbooks. Overall, the textbooks provide limited 
opportunities to engage in covariational reasoning when working with related rates problems. 
Implications for instruction are discussed. 
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Introduction 
 

A growing number of scholars have called for helping students develop strong quantitative 
and covariational reasoning abilities, respectively, arguing that this is necessary for students to 
acquire robust understandings of mathematical concepts/topics that involve making sense of 
quantities and how these quantities change in relation to each other such as related rates problems in 
calculus (e.g., Carlson et al., 2002; Castillo-Garsow, 2012; Confrey & Smith, 1995; Moore, 2014; 
Thompson, 1994, 2011). I remark that related rates problems form an integral part of any first-
semester calculus course in the United States (e.g., Engelke, 2007, Engelke-Infante, 2021; 
Mkhatshwa, 2020a).  

A mathematical task is a related rates problem if it involves at least two ‘rate’ quantities that 
can be related by an equation, function, or formula (Mkhatshwa, 2020a). There are two types of 
related rates problems, namely geometric and non-geometric. According to Mkhatshwa (2020a), “a 
geometric related rates problem is one in which the equation relating the quantities [in the problem] 
is based on a geometric structure such as the Pythagorean Theorem or the volume of a shape” 
(p.141). Analogously, a non-geometric related rates problem is one in which the equation relating the 
quantities in the problem is based on a non-geometric relationship such as some Physics laws (e.g., 
the ideal gas law) or the economics formula 𝑃𝑃 = 𝑅𝑅 − 𝐶𝐶, where 𝑃𝑃 is profit, 𝑅𝑅 is revenue, and 𝐶𝐶 is 
cost. 

https://orcid.org/0000-0002-3972-2233
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A historical analysis of related rates problems by Austin et al. (2000) reveals that the 
inclusion of related rates problems in calculus textbooks dates back to at least 1836. Furthermore, 
these authors found that related rates problems first appeared in the United States in 1851 in a 
calculus textbook published by Elias Loomis (1811-1889), who was a mathematics professor at Yale 
University. Students' difficulties with related rates problems, including those directly related to 
quantitative or covariational reasoning, respectively, are widespread and have continued to be a 
subject of empirical research investigations for the last 25 years (e.g., Alvine et al., 2007; Azzam et 
al., 2019; Code et al., 2014; Ellis et al., 2015; Engelke, 2007; Engelke-Infante, 2021; Jeppson, 2019; 
Kottath, 2021; Martin, 2000; Mkhatshwa & Jones, 2018; Mkhatshwa, 2020a, 2020b; Picollo & Code, 
2013; Taylor, 2014; White & Mitchelmore, 1996). In fact, within the last few years alone, several 
different studies (e.g., Azzam et al., 2019; Engelke-Infante, 2021; Jeppson, 2019; Kottath, 2021; 
Mirin & Zaskis, 2019; Mkhatshwa, 2020a) have reported on students’ difficulties in connection with 
related rates problems. Evidence from a related line of research suggests the existence of a 
correlation between learning opportunities provided by mathematics textbooks and difficulties 
exhibited by students in formal assessments (e.g., Schmidt et al., 2015). 

There are generally three different flavors of first-semester calculus offered at the 
undergraduate level in the United States, namely regular calculus (also known as engineering 
calculus), life sciences calculus, and business calculus. I note that while related rates problems are a 
common topic in regular calculus textbooks, they are not covered in most life sciences or business 
calculus textbooks. The five textbooks considered in this study include three regular calculus 
textbooks (Stewart et al., 2021; Hughes-Hallett et al., 2021; Rogawski et al., 2019), one life sciences 
calculus textbook (Greenwell et al., 2015), and one business calculus textbook (Barnett et al., 2019). 
The research question guiding this study is: What opportunities do calculus textbooks offer students 
to engage in quantitative reasoning or covariational reasoning when solving related rates problems? I 
remark that the purpose of this paper is not to make a theoretical contribution, but rather to 
describe learning opportunities in the context of quantitative reasoning and covariational reasoning 
provided by calculus textbooks. Additionally, the present study uses the term real-world context 
broadly to either refer to a relevant and essential context or a camouflage context (e.g., Wijaya et al., 
2015). It is worth noting that tasks with the former type of real-world context typically provide more 
opportunities to engage in quantitative reasoning compared to tasks that have the latter type of real-
world context (e.g., Vos, 2020). 

 
Background for the Study 
 

In a recent study (Mkhatshwa, 2022), I reported on quantitative and covariational reasoning 
opportunities provided by two widely used calculus textbooks in the United States. The focus of the 
study was on ordinary derivatives and partial derivatives. A key finding of the recent study is that 
there is a dearth of opportunities to engage in covariational reasoning in connection with ordinary or 
partial derivatives. Furthermore, the study found that while opportunities to engage in quantitative 
reasoning are prevalent in one of the textbooks (an applied calculus textbook), there is a short 
supply of similar opportunities in the other textbook (a traditional calculus textbook). 

To ascertain whether the findings of the recent study could be generalized to other topics 
covered in widely used calculus textbooks in the United States, the present study reports on 
opportunities to engage in quantitative reasoning and covariational reasoning, in the context of 
related rates problems, provided by five commonly used calculus textbooks in the United States. I 
note that two of the five textbooks in the present study were examined in the recent study on 
ordinary derivatives and partial derivatives. In essence, the present study examined a different topic 
(related rates problems) compared to the recent study.  
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Moreover, the present study examined three more textbooks compared to the recent study. 
As I show in the results section, findings (especially concerning covariational reasoning 
opportunities) of the present study are very similar to findings of the recent study. The observed 
similarities in the findings of the two studies lead me to the conclusion that there is generally a 
paucity of covariational reasoning opportunities in calculus textbooks used in the United States. 
Arguably, findings of both studies extend beyond the United States, as some of the widely used 
calculus textbooks in the United States are also used in other countries such as Canada. I therefore 
argue that calculus textbook authors should strive to include these seemingly lacking opportunities in 
future editions of their textbooks, in light of the significant role textbooks play in students’ learning 
of mathematics, among other things. 

 
Related Literature 

 
Opportunity to Learn  
 

Although there are slight variations in how the concept of opportunity to learn has been 
defined in the mathematics education literature, this concept has been used in the same literature for 
over half a century. For instance, Carrol (1963) defined opportunity to learn as the amount of time 
devoted to learning about a particular topic, while Husén (1997) defined the same concept as 
whether or not “students have had the opportunity to study a particular topic or learn how to solve 
a particular type of problem” (pp. 162-163). According to Floden (2002), Husen’s definition of 
opportunity to learn is commonly used in the mathematics education literature.  

This study uses Husén’s (1997) definition of opportunity to learn. Specifically, it examined 
whether or not widely used calculus textbooks in the United States provide opportunities for 
students to engage in quantitative reasoning or covariational reasoning in the context of working 
with related rates problems. This examination is particularly important because evidence from a 
related line of research suggests that student achievement in particular areas/topics of study is tied 
to the extent to which they have had an opportunity to learn about these areas/topics, such as via 
classroom instruction or course textbooks (e.g., Cogan & Schmidt, 2015). The significance of 
textbooks in students’ learning of mathematics cannot be overstated. In fact, according to Reys et al. 
(2004), “the choice of textbooks often determines what teachers will teach, how they will teach it, 
and how their students will learn” (p. 61), a sentiment that has been echoed by other researchers 
(e.g., Alajmi, 2012; Kolovou et al., 2009). In this study, the terms “opportunity to learn” and 
“learning opportunities” are used interchangeably. 

 
An Overview of Mathematics Textbook Research at the K-12 and University Level  
 

Research on learning opportunities provided by mathematics textbooks at the K-12 level 
(i.e., from Kindergarten to Grade 12) has not only received substantial attention, but also covers a 
wide range of topics, including cognitive demands of mathematical tasks (e.g., Basyal et al., 2022; 
Gracin, 2018), deductive reasoning (e.g., Stacey & Vincent, 2009), fractions (e.g., Alajmi, 2012; 
Charalambous et al., 2010), functions (e.g., Wijaya et al., 2015), problem solving (e.g., Jäder et al., 
2020), mathematical reasoning and proof (e.g., Stylianides, 2009; Thompson et al., 2012), probability 
(e.g., Jones & Tarr, 2007), proportional reasoning (e.g., Dole & Shield, 2008), statistics (e.g., Pickle, 
2012), trigonometry (e.g., Wijaya et al., 2015), and students’ perceptions regarding the role of 
textbooks in their learning of mathematics (e.g., Wang & Fan, 2021). 

On the contrary, similar research at the undergraduate level has not received considerable 
attention. The focus of the available studies at the undergraduate level has mainly been on cognitive 
demands of tasks typically found in mathematics textbooks (e.g., Mesa et al., 2012), learning 
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opportunities related to the concept of the derivative (e.g., Haghjoo et al., 2023, Park, 2016), 
continuity (e.g., Raman, 2004), optimization problems(e.g., Mkhatshwa & Doerr, 2016; Mkhatshwa, 
2023), infinite series (e.g., González-Martín et al., 2011; Heon & Mills, 2023; O’Sullivan et al., 2023), 
the usage of multiple ways (i.e., algebraically, graphically, numerically, or verbally) to represent 
mathematical ideas such as functions (e.g., Chang et al., 2016), and limits (e.g., Hong, 2022; Lithner, 
2004). On a related note, González-Martín et al. (2018) reported on a case study of how five 
instructors use a common textbook to prepare for teaching series in calculus. Mesa and Griffiths 
(2012) described three ways course textbooks mediate the work of college faculty, namely “textbook 
mediation between instructor and design of instruction” (p. 93), “textbook mediation between 
instructor and others” (p. 95), and “textbook mediation between instructor and self” (p. 98). 
According to Mesa and Griffith (2012): 

 
Reflexive mediation between the textbook and instructors manifests when instructors 
make mental or physical notes about things that work or do not work, find examples or 
problems that they need to modify or remove, and identify topics they will not cover or will 
cover next time they teach (p. 98). 
 
In the context of opportunity to learn, textbook mediation between instructor and self 

could, for instance, manifest when instructors find or modify examples or problems to supplement 
essential learning opportunities that are lacking or minimal in the textbooks adopted for their 
courses. It is worth mentioning that most of the participants in Mesa and Griffiths’ (2012) study 
were calculus instructors. Randahl (2012) reported on how first-year engineering students use 
mathematics textbooks in their learning of calculus. 

 
The Significance of Textbooks in Mathematics Education 
 

Textbooks play a crucial role in students’ learning of mathematics. A recurrent finding from 
research that has scrutinized the significance of textbooks in the teaching and learning of 
mathematics at all levels is that nearly all mathematics content covered during classroom instruction 
is generally dictated by course textbooks (e.g., Begle, 1973; Rezat, 2006; Reys et al., 2004; Robitaille 
& Travers, 1992; Törnroos, 2005; Wijaya et al., 2015). Indeed, in an attempt to underscore the 
importance of mathematics textbooks, Begle (1973) asserted that most of what students learn is 
directed by textbooks rather than teachers. Similar assertions have been echoed by other researchers 
(e.g., Blazar et al., 2020; Polikoff, 2018; Polikoff et al., 2021). 

 
Students’ Difficulties with Engaging in Quantitative Reasoning or Covariational Reasoning 
when Solving Related Rates Problems  
 

Several studies have reported that related rates problems have a reputation, among students, 
of being difficult to master (e.g., Alvine et al., 2007; Ellis et al., 2015; Engelke-Infante, 2021). A 
common finding of research that has examined students’ reasoning in the context of working with 
related rates problems is that students often exhibit difficulties engaging in certain aspects of 
quantitative reasoning. In particular, a growing number of studies have reported on students who 
struggled with determining correct units of measure for quantities (e.g., Azzam et al., 2019; 
Mkhatshwa, 2020a, Kottath, 2021). White and Mitchelmore (1996) reported on students who treated 
variables representing quantities as symbols that are to be manipulated algebraically and not as 
quantities that are to be related.  

Several studies that have investigated students’ thinking about geometric-related rates 
problems have found that mathematizing (Freudenthal, 1993) this type of problem is problematic 
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for students (e.g., Azzam et al., 2019; Jeppson, 2019; Martin, 2000; Mkhatshwa, 2020a; White & 
Mitchelmore, 1996). To be specific, mathematizing a related rates problem entails using algebraic 
symbols to represent the different quantities in the problem, in addition to using an 
equation/formula to relate the quantities. On a positive note, findings of recent studies on related 
rates problems suggest that using diagrams to support students’ quantitative reasoning is effective 
when solving related rates problems (e.g., Engelke-Infante, 2021; Mkhatshwa, 2020a). 

Evidence from research shows that students exhibit weak covariational reasoning abilities 
when solving related rates problems (e.g., Carlson et al., 2002; Engelke, 2007). Specifically, this 
research shows that students seldom engage in the highest levels of covariational reasoning when 
solving related rates problems. Findings from a related line of research on students’ thinking about 
ordinary derivatives, crucial elements of any related rates problem in calculus, indicate that students’ 
weak covariational reasoning abilities are often evident when they are engaged in solving application 
problems that involve working with quantities that can be represented using ordinary derivatives 
(e.g., Jones, 2017; Nagle et al., 2013). 

 
Document Analysis and its Usefulness in Qualitative Research 
 

Document analysis is a useful method in qualitative research (e.g., Merriam & Tisdell, 2016; 
Morgan, 2022). This study uses the definition of document analysis proposed by Bowen (2009): 

 
Document analysis is a systematic procedure for reviewing or evaluating documents–both 
printed and electronic (computer-based and Internet-transmitted) material. Like other 
analytical methods in qualitative research, document analysis requires that data be examined 
and interpreted in order to elicit meaning, gain understanding, and develop empirical 
knowledge [e.g., Corbin & Strauss, 2008; Rapley, 2007]. Documents contain text (words) and 
images that have been recorded without a researcher’s intervention (p. 27). 
 
The documents considered in the present study are five textbooks that are widely used in the 

teaching of undergraduate calculus in the United States. Factors to consider when selecting 
documents for analysis include authenticity, credibility, representativeness, and meaning (e.g., 
Morgan, 2022). According to Morgan (2022), authenticity examines the degree to which a document 
is genuine, credibility examines the accuracy of a document, representativeness examines the degree 
to which a document is typical, and meaning examines the degree to which a document’s content is 
significant, clear, or understandable. 

I conclude this section by highlighting a few reasons behind my choice of using document 
analysis in the present study. First, “information and insights derived from documents can be 
valuable additions to a knowledge base” (Bowen, 2009, p. 30). Second, document analysis does not 
involve collecting new data. Consequently, the resources (e.g., time and costs) associated with using 
this methodology are often minimal (Pershing, 2002).  

Third, “document analysis can serve as either a stand-alone data-collection procedure or as a 
precursor to collecting new data using other methodologies” (Pershing, 2002, p. 36). I remark that in 
the present study, document analysis serves as a stand-alone data-collection procedure. Fourth, the 
documents are readily available in the public domain (Bowen, 2009). Fifth, document analysis is not 
affected by obtrusiveness and reactivity i.e. the documents are not affected by the research process 
(Bowen, 20009). As with any research methodology, document analysis has its own limitations. 
These include insufficient detail [i.e. documents are not often produced with a research agenda], low 
retrievability, and biased selectivity [of the documents to be analyzed]. Citing the efficiency and cost-
effectiveness of document analysis, Bowen (2009) argued that the benefits of this method far 
outweigh its limitations. 
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Theoretical Perspective 

 
Quantitative Reasoning and Covariational Reasoning  
 

Developed nearly three decades ago, the theoretical constructs of quantitative reasoning and 
covariational reasoning are well known among most mathematics education researchers and 
practitioners (e.g., Carlson et al., 2002; Smith III & Thompson, 2007; Thompson, 1993, 2011). 
Consequently, this section provides a synopsis of these theoretical constructs in connection with the 
present study. The interested reader is referred to my recent study (Mkhatshwa, 2022) for a 
comprehensive description of the aforementioned theoretical constructs as they relate to the analysis 
of learning opportunities provided by mathematics textbooks. When measured, quantities have units 
of measure (e.g., Thompson, 1993). The length of a ladder, the radius of a snowball, and the distance 
travelled by a car are a few of many examples of quantities referred to in the present study. 
Quantitative reasoning entails quantification (i.e., determining numeric values for quantities), 
interpreting quantities, analyzing and determining units of measure for quantities, and analyzing 
quantities and relationships among quantities based on textual descriptions of problem statements, 
algebraic equations, graphs/diagrams, or numerical tables of values, respectively, among other 
things. 

Covariational reasoning, on the other hand, deals with analyzing how two or more quantities 
are changing in relation to each other. Figure 1 provides a description, using the Ladder Problem as 
an example, of the five levels of covariational reasoning. 
 
Figure 1 
 
Ladder Problem (Reproduced from Carlson et al., 2002, p. 371) 
 

 
 

Coordination: At the coordination level of covariational reasoning, also known as Level 1, a 
recognition that two quantities are changing simultaneously is made. In terms of the related rates 
problem described in Figure 1, this could mean recognizing that the vertical distance and the 
horizontal distance are changing simultaneously as the bottom of the ladder is pulled away. 

Direction: At the direction level of covariational reasoning, also known as Level 2, attention 
is given to how two quantities are changing (direction-wise) in relation to each other. This could 
mean recognizing that as the bottom of the ladder is pulled away, the horizontal distance increases 
while the vertical distance decreases.  

Quantitative Coordination: At the quantitative coordination level of covariational 
reasoning, also known as Level 3, one coordinates the amount of change of at least one of the two 
quantities. A qualifying remark at this level could be something like the following: “The vertical 
distance decreases by 0.5 feet as the horizontal distance increases.” 

Average Rate: At the average rate of change level of covariational reasoning, also known as 
Level 4, the focus is on coordinating the average rate of change of one of the quantities with 
constant changes in the other quantity. A qualifying remark at this level could be a comment like the 
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following: “The vertical distance decreases by 0.75 feet every time the horizontal distance increases 
by one foot.” 

Instantaneous Rate: At the instantaneous rate level of covariational reasoning, also known 
as Level 5, the focus is on coordinating the instantaneous rate of change of one of the quantities 
with continuous changes in the other quantity. That is, a person reasoning at the instantaneous rate 
level continuously quantifies how the vertical distance changes with much smaller (less than one 
foot) changes in the horizontal distance. 

 
The Role of Quantitative Reasoning and Covariational Reasoning in Related Rates 
Problems 
 

The combination of quantitative and covariational reasoning is crucial in making sense of 
related rates problems (e.g., Engelke, 2004; Mkhatshwa, 2020a). A multitude of physical or dynamic 
situations/events can be modelled using related rates problems in different disciplines, including 
physics, engineering, and economics. In physics, for example, the relationship between the height of 
a rocket that rises vertically and the angle of a camera placed several yards from the launch pad of 
the rocket can be modeled using a related rates problem. According to Engelke (2007): 

 
Solving a related rates problem requires that the student engage in covariational reasoning to 
understand how the problem works, construct a mental model that allows them to recognize 
which variables are changing, construct a meaningful relationship between the changing 
quantities (create an appropriate formula), and reconceptualize the variables in their formula 
as functions of time. Only then may they use the chain rule to correctly differentiate their 
formula with respect to time and solve for the desired variable. (p. 29) 

 
Quantitative reasoning plays an important role in the process of solving any related rates 

problem that has a real-world context. Among other things, the final step when constructing a 
solution to a related rates problem involves engaging in the process of quantification (i.e., assigning a 
numerical value to the quantity described by Engelke (2007) as the “desired variable” in the 
preceding quotation). In fact, some of the previously reported challenges exhibited by students when 
tasked with solving related rates problems deal directly with quantitative reasoning. Mkhatshwa 
(2020a) theorized that while covariational reasoning is certainly a key construct when dealing with 
related rates problems, there may be quantitative ideas, such as the role and use of diagrams to 
represent relationships between quantities, at play. 

As previously noted, there is a relationship between the opportunity to learn about a 
particular area/topic and students’ achievement when assessed in the same area/topic (e.g., Cogan & 
Schmidt, 2015). Furthermore, both quantitative reasoning and covariational reasoning are essential 
for students hoping to develop a solid understanding of various calculus ideas, such as the concept 
of the derivative (e.g., Carlson et al., 2002; Mkhatshwa, 2024). Additionally, covariational reasoning 
is an essential mode of reasoning for students hoping to make sense of related rates problems in 
calculus (e.g., Engelke, 2007). According to Jones (2017), Carlson’s five levels of covariational 
reasoning are increasingly sophisticated. Consequently, I posit that students who are able to engage 
at the highest levels of covariational reasoning demonstrate deeper levels of learning or 
understanding. Indeed, Carlson et al. (2002) reported on two students (Student A and Student B) 
who reasoned at the highest levels of covariational reasoning.  The students’ reasoning at the highest 
levels of covariational reasoning correlated with high achievement in a related rates task involving a 
spherically-shaped bottle that was filled with water. In light of the multitude of benefits associated 
with engaging in quantitative reasoning or covariational reasoning in the study of calculus, it is 
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paramount that calculus textbook authors provide plenty of opportunities (e.g., expository sections, 
examples, and practice problems) for students to engage in the aforementioned modes of reasoning. 

 
Methods 

 
Analyzed Textbooks  
 

Five textbooks commonly used in the teaching of regular calculus, life sciences calculus, and 
business calculus in the United States, respectively, were analyzed in this study. See Table 1 for 
information on the textbooks included for analysis in this study.  

 
Table 1 
 
 Analyzed Textbooks 
 

Textbook Name Author(s) Sections Analyzed Textbook 
Publisher 

Calculus: Early Transcendentals 
(9th ed) 

Stewart et al. (2021) 3.9: Related Rates   Cengage Learning 

Calculus: Early Transcendentals 
(4th ed) 

Rogawski et al. 
(2019) 

3.10: Related Rates   Macmillan 
Learning 

Single Variable Calculus (8th ed) Hughes-Hallett et al. 
(2021) 

4.6: Rates and Related Rates Wiley 

Calculus for the Life Sciences 
(2nd ed) 

Greenwell et al. 
(2015) 

6.4: Related Rates   Pearson 
Education 

Calculus for Business, 
Economics, Life Sciences, and 
Social Sciences (14th ed) 

Barnett et al. (2019) 3.7: Related Rates   Pearson 
Education 

 
Before selecting these textbooks, I consulted with major textbook publishing companies in the 
United States, including Cengage Learning, Pearson Education, and Wiley, regarding commonly 
used or ordered calculus textbooks. 

Regular calculus in the United States undergraduate mathematics curriculum is generally 
taken by Science, Technology, Engineering, and Mathematics majors, respectively. Life sciences 
calculus is typically taken by biology majors, while business calculus is mostly taken by business or 
economics majors, respectively. 

 
Data Analysis 
 

There are three sources of data for this study, namely (1) expository sections on related rates 
problems, (2) examples on related rates problems, and (3) practice problems listed at the end of the 
sections noted in Tables 1 and 2.  

Expository sections, examples, and practice problems were analyzed through the theoretical 
constructs of quantitative reasoning and covariational reasoning, both of which are described in the 
theoretical perspective section. Additionally, I examined definitions of related rates problems as well 
as strategies for solving related rates problems as part of my analysis of expository sections. 
Furthermore, examples or practice problems (hereafter, tasks) were classified as either having real-
world contexts or mathematics contexts. In my recent study (Mkhatshwa, 2022), I explained that 
tasks with the former type of contexts provide opportunities to engage in quantitative reasoning 
while tasks with the latter type of contexts do not.  
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Table 2 
 
 Counts of Examples, Practice Problems, and Expository Sections 
 

Textbook Name Section Expository Sections Examples Practice Problems 
Calculus: Early 
Transcendentals (9th ed) 

3.9 2 5 53 

Calculus: Early 
Transcendentals (4th ed) 

3.10 2 5 45 

Single Variable Calculus (8th 
ed) 

4.6 1 4 69 

Calculus for the Life Sciences 
(2nd ed) 

6.4 2 6 36 

Calculus for Business, 
Economics, Life Sciences, 
and Social Sciences (14th ed) 

3.7 2 4 48 

Total   9 24 251 

 
Lastly, evidence from research on students’ thinking about related rates problems suggests 

that students struggle with mathematizing related rates problems (e.g., Azzam et al., 2019; Jeppson, 
2019; Martin, 2000; White & Mitchelmore, 1996). Other studies have found that solving non-
geometric related problems is particularly challenging for students (e.g., Mkhatshwa, 2020a). 
Furthermore, findings from research indicate that the use of diagrams could be used to support 
students’ quantitative reasoning when solving related rates problems (e.g., Engelke-Infante, 2021; 
Mkhatshwa, 2020a). I examined the availability (or lack thereof) of opportunities related to the 
aforementioned research findings in each textbook.  
 
Illustrations of How Tasks were Coded Through the Lens of Quantitative Reasoning 
 

In this section, I provide examples to illustrate how the tasks (examples and practice 
problems) were analyzed through the lens of quantitative reasoning. 

Practice Problem 2 [Mathematics context] [Non-geometric] (Rogawski et al., 2019, p. 202):  
 

If 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 and  𝑦𝑦 = 𝑥𝑥3, what is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑥𝑥 = −4, 2, 6? 
 

Practice Problem 2 is representative of practice problems I categorized as having a 
mathematics context, a related rates problem that does not provide quantitative reasoning 
opportunities such as interpreting quantities, and a non-geometric related rates problem because the 
equation relating the variables 𝑥𝑥 and 𝑦𝑦 (i.e., 𝑦𝑦 = 𝑥𝑥3) is not based on a geometric relationship such as 
the Pythagorean Theorem or the volume of a shape. 

Example 3 [Real-world context] [Geometric] (Hughes-Hallett et al., 2021, pp. 254-255): A 
spherical snowball melts in such a way that the instant at which its radius is 20 𝑐𝑐𝑐𝑐, its radius is 
decreasing at 3 𝑐𝑐𝑐𝑐/𝑐𝑐𝑚𝑚𝑚𝑚. At what rate is the volume of the ball of snow changing at that instant? 

Example 3 is representative of tasks I categorized as having a real-world context, as a task 
that requires simple mathematizing as finding the equation that relates the quantities of volume (𝑉𝑉) 
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and radius (𝑟𝑟) only requires recalling the volume of a sphere (i.e., 𝑉𝑉 = 4
3
𝜋𝜋𝑟𝑟3), and as a geometric 

related rates problem because the equation relating the quantities is based on the volume of a shape 
(i.e., sphere). Additionally, I categorized Example 3 as a task that provides an opportunity for 
students to assign a numerical value to the quantity representing the rate at which the volume of the 
snowball is changing (i.e., decreasing) at the instant when the radius is 20 𝑐𝑐𝑐𝑐. The radius is 
decreasing at a rate of 3 𝑐𝑐𝑐𝑐/𝑐𝑐𝑚𝑚𝑚𝑚, and as a task that provides an opportunity for students to 
determine the units of measure (i.e., 𝑐𝑐𝑐𝑐3/𝑐𝑐𝑚𝑚𝑚𝑚) for the aforementioned quantity.   

Practice Problem 33 [Real-world context] [Non-geometric] (Barnett et al., 2019, p. 227): 
Suppose that for a company manufacturing calculators, the cost, revenue, and profit equations are 
given by 

 
𝐶𝐶 = 90,000 + 30𝑥𝑥 

𝑅𝑅 = 300𝑥𝑥 −
𝑥𝑥2

30
 

𝑃𝑃 = 𝑅𝑅 − 𝐶𝐶 
 
where the production output in 1 week is 𝑥𝑥 calculators. If production is increasing at a rate of 500 
calculators per week when production output is 6,000 calculators, find the rate of increase (decrease) 
in: (a) Cost, (b) Revenue, and (c) Profit. 

Practice Problem 33 is another example of tasks in the textbooks that I categorized as having 
a real-world context. I further categorized this task as a non-geometric related rates problem because 

the equations relating the quantities 𝑥𝑥,𝑃𝑃,𝑅𝑅, and C (i.e., 𝐶𝐶 = 90,000 + 30𝑥𝑥, 𝑅𝑅 = 300𝑥𝑥 − 𝑑𝑑2

30
 , and 

𝑃𝑃 = 𝑅𝑅 − 𝐶𝐶) are not based on geometric structures. I also categorized Practice Problem 33 as a task 
that does not require mathematizing as the equations relating the quantities 𝑥𝑥, 𝑃𝑃,𝑅𝑅, and 𝐶𝐶 are 
provided. Moreover, I categorized Practice Problem 33 as a task that provides opportunities for 
students to engage in the process of quantification (i.e., assigning numerical values to the quantities 
representing the rates at which 𝐶𝐶,𝑅𝑅, and 𝑃𝑃 are changing if production is increasing at a rate of 500 
calculators per week when production output is 6,000 calculators). Finally, I categorized this task as 
providing an opportunity for students to make sense of and to determine the units of measure (i.e., 
dollars/week) for the aforementioned rate quantities. 

 
Illustrations of How Tasks were Coded Through the Lens of Covariational Reasoning 
 

In this section, I provide examples to illustrate how the tasks were analyzed through the lens 
of covariational reasoning. I begin this section by noting that I categorized tasks that could not be 
analyzed through the lens of covariational reasoning (e.g., Practice Problem 2, reproduced in the 
preceding subsection) as tasks that do not provide opportunities to engage in covariational 
reasoning.  

Example 3 [Real-world context] [Geometric] (Stewart et al., 2021, pp. 249-250): A water 
tank has the shape of an inverted cone with base radius 2 𝑐𝑐 and height 4 𝑐𝑐. If water is being 
pumped into the tank at a rate of 2 𝑐𝑐3/𝑐𝑐𝑚𝑚𝑚𝑚, find the rate at which the water level is rising when the 
water is 3 𝑐𝑐 deep. 

Solution: We first sketch the cone and label it as in Figure 2. Let 𝑉𝑉, 𝑟𝑟, and ℎ be the volume 
of the water, the radius of the surface, and the height of the water at time 𝑡𝑡, where 𝑡𝑡 is measured in 
minutes.  
 
Figure 2 



A QUALITATIVE DOCUMENT ANALYSIS 67 

 
Accompanying Diagram-for Example 3 
 

 
 

We are given that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 𝑐𝑐3/𝑐𝑐𝑚𝑚𝑚𝑚 and we are asked to find 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

  when ℎ = 3 𝑐𝑐. The 

quantities 𝑉𝑉 and ℎ are related by the equation 𝑉𝑉 = 1
3
𝜋𝜋𝑟𝑟2ℎ but it is very useful to express 𝑉𝑉 as a 

function of ℎ alone. In order to eliminate 𝑟𝑟, we use the similar triangles in Figure 2 to write 𝑟𝑟
ℎ

= 2
4
, 

from which we get that 𝑟𝑟 = ℎ
2
. The expression for 𝑉𝑉 becomes 𝑉𝑉 = 1

3
𝜋𝜋ℎ �ℎ

2
�
2

= 𝜋𝜋
12
ℎ3. Now we can 

differentiate each side with respect to 𝑡𝑡: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋
4
ℎ2 𝑑𝑑ℎ

𝑑𝑑𝑑𝑑
  so 𝑑𝑑ℎ

𝑑𝑑𝑑𝑑
= 4

𝜋𝜋ℎ2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Substituting ℎ =  3 𝑐𝑐 and  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  2𝑐𝑐3/𝑐𝑐𝑚𝑚𝑚𝑚, we have 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 4
𝜋𝜋(32)

∗ 2 = 8
9𝜋𝜋

. The water level is rising at a rate of 8
9𝜋𝜋
≈

0.28 𝑐𝑐/𝑐𝑐𝑚𝑚𝑚𝑚. 
Example 3 is representative of tasks I categorized as providing opportunities to engage at the 

coordination level of covariational reasoning (i.e., Level 1) because the quantities (𝑉𝑉, 𝑟𝑟, and ℎ) are 
changing simultaneously. The statement [in the solution of the task], “the water level is rising at a 
rate of 8

9𝜋𝜋
≈ 0.28 𝑐𝑐/𝑐𝑐𝑚𝑚𝑚𝑚”, provides opportunities to engage at the direction and quantitative 

coordination levels of covariational reasoning (i.e., Levels 2 and 3). In particular, the remark about 
the water level rising as time elapses in the aforenoted statement constitutes engaging at the 
direction level of covariational reasoning. Quantifying the rate at which the water level is rising 
(0.28 𝑐𝑐/𝑐𝑐𝑚𝑚𝑚𝑚) in the same statement constitutes engaging at the quantitative coordination level of 
covariational reason. I remark that none of the textbooks were coded at the highest two levels of 
covariational reasoning (i.e., average rate and instantaneous rate). Specifically, none of the expository 
sections or tasks included in the five textbooks analyzed in the present study provided opportunities 
for students to engage at the highest two levels of covariational reasoning. 

Additionally, I categorized Example 3 as a task that has a real-world context, as a geometric 
related rates problem because the equation relating the quantities 𝑉𝑉, 𝑟𝑟, and ℎ (i.e., 𝑉𝑉 = 1

3
𝜋𝜋𝑟𝑟2ℎ) is 

based on a geometric structure (i.e., a cone). This is also a task that provides an opportunity to 
engage in quantification (i.e., finding a numerical value of the rate at which the level of the water is 
rising), and as a task that requires simple mathematizing as formulating the equation relating the 
quantities 𝑉𝑉, 𝑟𝑟, and ℎ does not require complex reasoning, as in, it can simply be recalled. 
Furthermore, I categorized Example 3 as a task that provides an opportunity for students to use a 
diagram (Figure 2) to support their quantitative reasoning when solving the related rates problem in 
the task. To clarify the coding process, I note that even though there are a few tasks (e.g., Example 
3) I analyzed for both quantitative and covariational reasoning opportunities provided in the tasks, 
for the most part, these two codes (quantitative reasoning and covariational reasoning) are treated as 
mutually exclusive in the present study. I revisit this issue in the study limitations section of the 
manuscript. 
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Results 

 
There are three primary results from this study. First, four of the five textbooks provide 

concise strategies (i.e., lists of three to seven steps) students could use when solving a related rates 
problem. The textbook by Hughes-Hallet et al. (2021) is the only textbook that does not provide a 
list of steps students could follow when solving a related rates problem. Second, all the textbooks 
provide plenty of opportunities to engage in quantitative reasoning via examples and practice 
problems on related rates problems. Third, there is a paucity of opportunities to engage in 
covariational reasoning through expository sections, examples, and practice problems on related 
rates problems, respectively, provided in all the textbooks. In addition, the few available 
opportunities are limited to low levels of covariational reasoning, namely coordination, direction, 
and sometimes quantitative coordination. 

 
Definition of Related Rates Problems and Strategies for Solving these Problems 
 

The definitions of a related rates problem given in the five textbooks are consistent with 
how a related rates problem is generally understood by the mathematics community in the United 
States, or how this type of problem is defined in the research literature (e.g., Mkhatshwa, 2020a). 
Specifically, according to one of the textbooks: 

 
In a related rates problem, the idea is to compute the rate of change of one quantity in terms 
of the rate of change of another quantity (which may be more easily measured). The 
procedure is to find an equation that relates the two quantities and then use the chain rule to 
differentiate both sides with respect to time (Stewart et al., 2021, p. 247). 
 
Before giving the aforementioned definition of a related rates problem, Stewart and 

colleagues (2021) portrayed a picture of a related rates problem by giving the example of pumping 
air into a balloon. These authors remarked that in this example, it would be easier to measure 
directly the rate of increase of the volume of the balloon than the rate of increase of the radius of 
the balloon. These textbook authors went on to propose a seven-step problem-solving strategy (the 
most comprehensive problem-solving strategy compared to similar problem-solving strategies 
provided in three other textbooks) that can be used when solving a related rates problem. The 
following is a reproduction of this strategy (Stewart et al., 2021, p. 249): 

 
Step 1: Read the problem carefully. 
Step 2: Draw a diagram if possible.  
Step 3: Introduce notation. Assign symbols to all quantities that are functions of time. 
Step 4: Express the given information and the required rate in terms of derivatives. 
Step 5: Write an equation that relates the various quantities of the problem. If necessary, use 
the geometry of the situation to eliminate one of the variables by substitution. 
Step 6: Use the chain rule [of differentiation] to differentiate both sides of the equation with 
respect to 𝑡𝑡 [a time variable]. 
Step 7: Substitute the given information into the resulting equation and solve for the 
unknown rate. 
 
I note that the aforementioned steps are similar to steps previously used by students when 

tasked with solving geometric related rates problems (e.g., Engelke, 2007; Martin, 2000, Mkhatshwa, 
2020a). I further note that usage of these steps is well illustrated through five examples in the 
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textbook, one of which was reproduced in the Methods section. I remark that the regular calculus 
textbook by Rogawski et al. (2019) provides the least comprehensive problem-solving strategy 
(compared to three other textbooks) that could be used by students when solving a related rates 
problem. The following is a reproduction of this strategy (Rogawski et al., 2019): 

 
Step 1: Identify variables and the rates that are related. 
Step 2: Find an equation relating the variables and differentiate it.  
Step 3: Use given information to solve the problem. 
 
Compared to Step 6 in Stewart et al.’s (2021) problem solving strategy, among other things, 

Step 2 in Rogawski et al.’s (2019) problem solving strategy does not specify the type of 
differentiation [chain rule] that is to be used after finding the equation that relates the quantities 
involved in the problem.  

Opportunities to Engage in Quantitative Reasoning 
Expository Sections. None of the nine expository sections noted in Table 2 provide 

opportunities to engage in quantitative reasoning. That is, the expository sections in the five 
textbooks do not provide opportunities to interpret physical quantities, to determine units of 
measure for physical quantities, or to engage in the process of quantification. I note, however, that 
all the expository sections came close to providing something we would consider to be opportunities 
to engage in quantitative reasoning. In the life sciences textbook, for example, Greenwell et al. 
(2015) posed the following rhetorical question to highlight the importance of related rates problems 
in the life sciences: When a skier’s blood vessels contract because of the cold, how fast is the 
velocity of the blood changing? These textbook authors went on to make the following remark prior 
to providing examples on related rates problems: 

 
It is common for variables to be functions of time; for example, sales of an item may depend 
on the season of the year, or a population of animals may be increasing at a certain rate 
several months after being introduced into an area. Time is often present implicitly in a 
mathematical model, meaning that derivatives with respect to time must be found by the 
method of implicit differentiation discussed in the previous section (p. 343). 

 
While none of the quantities (e.g., sales of an item, population of animals, the rate of change 

of the population of animals) needed to be interpreted in the preceding pair of statements, to 
emphasize the importance of units when making sense of quantities and relationships between 
quantities, one can argue that Greenwell et al. (2015) could have used, for example, antelopes per 
year as a unit of measure for the quantity that represents the rate at which the population of animals 
[e.g., antelopes] is increasing. Similar remarks were made by the authors of the other textbooks 
considered in this study. 

Examples. As can be seen in Table 3, all the examples presented in the related rates section 
of each of the five textbooks provide ample opportunities to engage in quantitative reasoning (i.e., 
these examples have real-world contexts). Specifically, the examples generally provide opportunities 
to interpret physical quantities, to assign units of measure to these quantities, or to engage in the 
process of quantification. Example 1 is a typical example (in addition to the two Examples 3s that 
were reproduced in the Methods section) that provides opportunities to engage in the process of 
quantification, and to make sense of quantities, relationships among quantities, and units of measure 
for quantities, respectively: 
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Table 3 
 
Classification of Examples by Type of Context 
 

Textbook Name Count of examples with a 
real-world context 

Count of examples with a 
mathematics context 

Calculus: Early Transcendentals (9th ed) 5 0 

Calculus: Early Transcendentals (4th ed) 5 0 

Single Variable Calculus (8th ed) 4 0 

Calculus for the Life Sciences (2nd ed) 6 0 

Calculus for Business, Economics, Life 
Sciences, and Social Sciences (14th ed) 

4 0 

Total  24 0 
 

Example 1 [Real-world context] [Geometric] (Barnett et al., 2019, p. 222): A 26-foot ladder 
is placed against a wall as shown in Figure 3.  
 
Figure 3 
 
Diagram that Accompanies Example 1 

 
 
If the top of the ladder is sliding down the wall at 2 feet per second, at what rate is the bottom of 
the ladder moving away from the wall when the bottom of the ladder is 10 feet away from the wall? 

This example provides an opportunity to make sense of how several quantities (the vertical 
distance of the ladder denoted by the variable 𝑦𝑦 in Figure 3, the horizontal distance of the ladder 
denoted by the variable 𝑥𝑥 in Figure 3, and the rates of change of 𝑥𝑥 and 𝑦𝑦 as the top of the ladder is 
sliding down the wall) are related. Furthermore, the example provides an opportunity to determine 
units of measure for the unknown quantity (i.e., the rate at which the bottom of the ladder is moving 
away from the wall at the instant when the bottom of the ladder is 10 feet away from the wall). It 
also provides an opportunity to engage in the process of quantification (i.e., determine a numerical 
value for the quantity that represents the rate at which the bottom of the ladder is moving away 
from the wall at the instant when the bottom of the ladder is 10 feet away from the wall). Lastly, I 
interpreted the inclusion of Figure 3 in Example 1 as a means of supporting students’ reasoning 
about relationships among the quantities involved in the example. As can be seen in Table 4, most 
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of the examples in the five textbooks have accompanying diagrams to support students’ quantitative 
reasoning when working through these examples. 
 
Table 4 
 
Count of Examples With or Without Accompanying Diagrams 
 

Textbook Name Count of examples with 
accompanying diagrams 

Count of examples without 
accompanying diagrams 

Calculus: Early Transcendentals (9th ed) 4 1 
 
 

Calculus: Early Transcendentals (4th ed) 5 0 

Single Variable Calculus (8th ed) 3 1 

Calculus for the Life Sciences (2nd ed) 4 2 

Calculus for Business, Economics, Life 
Sciences, and Social Sciences (14th ed) 

2 2 

Total  18 6 

 
Even though the examples on related rates problems given in the five textbooks are rich in 

terms of opportunities to engage in quantitative reasoning, as can be seen in Table 5, a majority of 
the examples are geometric related rates problems.  
 
Table 5 
 
 Count of Geometric Versus Non-Geometric Related Rates Examples 
 

Textbook Name Count of geometric 
examples 

Count of non-geometric 
examples 

Calculus: Early Transcendentals (9th ed) 5 0 
Calculus: Early Transcendentals (4th ed) 5 0 

Single Variable Calculus (8th ed) 3 1 

Calculus for the Life Sciences (2nd ed) 4 2 

Calculus for Business, Economics, Life Sciences, 
and Social Sciences (14th ed) 

3 1 

Total  20 4 

 
Consequently, mathematizing these examples is straightforward, as it typically involves 

recalling formulas that relate the quantities involved in these tasks. In Example 1, the equation 
relating the length of the ladder (26 ft), the quantity representing the vertical distance of the ladder 
(𝑦𝑦), and the quantity representing the horizontal distance of the ladder (𝑥𝑥) is given by the 
Pythagorean Theorem (i.e., 𝑥𝑥2 + 𝑦𝑦2 = 262). 

Practice Problems. As can be seen in Table 6, a great majority of the practice problems in 
the five textbooks provide numerous opportunities to engage in quantitative reasoning (i.e., they 
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have real-world contexts). The following is a reproduction of a geometric related rates problem, 
typical of the five textbooks, that provides opportunities to engage in quantitative reasoning: 
 
Table 6 
 
 Classification of Practice Problems by Type of Context 
 

Textbook Name Count of practice problems 
with a real-world context 

Count of practice problems 
with a mathematics context 

Calculus: Early Transcendentals (9th ed) 51 2 

Calculus: Early Transcendentals (4th ed) 43 2 

Single Variable Calculus (8th ed) 64 5 

Calculus for the Life Sciences (2nd ed) 26 10 

Calculus for Business, Economics, Life 
Sciences, and Social Sciences (14th ed) 

42 6 

Total  226 25 
 

Practice Problem 13 [Real-world context] [Geometric] (Rogawski et al., 2019, p. 203): At a 
given moment, a plane passes directly above a radar station at an altitude of 6 𝑘𝑘𝑐𝑐. 

 
(a) The plane’s speed is 800 𝑘𝑘𝑐𝑐/ℎ. How fast is the distance between the plane and the station 

changing half a minute later? 
(b)  How fast is the distance between the plane and the station changing when the plane passes 

directly above the station? 
 
Parts (a) and (b) prompt students to engage in quantification (i.e., to quantify the rate at 

which the distance between the plane and the station is changing). Students are also expected to 
determine the units of measure for the specified quantities in parts (a) and (b). Mathematizing this 
problem (and many other geometric related rates problems found in the five textbooks) is not 
challenging as it involves using the Pythagorean Theorem. Practice Problem 18, in addition to 
Practice Problem 33 reproduced in the Methods section, is an example of the few non-geometric 
related rates problems found in the five textbooks.  

Practice Problem 18 [Real-world context] [Non-geometric] (Greenwell et al., 2015, p. 348): 
The energy cost of horizontal locomotion as a function of the body weight of a marsupial is given 
by 𝐸𝐸 = 22.8𝑤𝑤−0.34, where 𝑤𝑤 is the weight (in 𝑘𝑘𝑘𝑘) and 𝐸𝐸 is the energy expenditure (in 
𝑘𝑘𝑐𝑐𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘/𝑘𝑘𝑐𝑐). Suppose that the weight of a 10 𝑘𝑘𝑘𝑘 marsupial is increasing at a rate of 0.1𝑘𝑘𝑘𝑘/𝑑𝑑𝑘𝑘𝑦𝑦. 
Find the rate at which the energy expenditure is changing with respect to time. 

Among other things, Practice Problem 18 provides an opportunity to quantify the unknown 
quantity (i.e., the rate at which the energy expenditure is changing with respect to time. Furthermore, 
this practice problem provides an opportunity to make sense of the units of measure for the 
aforementioned unknown quantity. As with all the other non-geometric related rates problems 
provided in the five textbooks, students do not have to mathematize this task as the equation [𝐸𝐸 =
22.8𝑤𝑤−0.34] relating the quantities 𝐸𝐸 and 𝑤𝑤 is given as part of the statement of the problem. In 
general, I found no trend in the frequency or amount of available opportunities to work with non-
geometric related rates problems presented in the five textbooks. Table 7 displays this information.  
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Table 7 
 
 Count of Geometric Versus Non-Geometric Related Rates Practice Problems 
 

Textbook Name Count of geometric practice 
problems 

Count of non-geometric 
practice problems  

Calculus: Early Transcendentals (9th ed) 47 6 

Calculus: Early Transcendentals (4th ed) 38 7 

Single Variable Calculus (8th ed) 35 34 

Calculus for the Life Sciences (2nd ed) 12 24 

Calculus for Business, Economics, Life Sciences, 
and Social Sciences (14th ed) 

25 23 

Total  157 94 

 
Specifically, while the number of non-geometric related rates problems is extraordinarily low 

in the Stewart et al. (2021) and Rogawski et al. (2019) textbooks, the proportion of geometric and 
non-geometric related rates problems in the Hughes-Hallett et al. (2021) and Barnett et al. (2019) 
textbooks is nearly the same. Furthermore, a majority of the problems in the Greenwell et al. (2015) 
textbook are non-geometric related rates problems. Additionally, opportunities promoting the use of 
diagrams to make sense of quantities and relationships among quantities while working with related 
rates problems are extremely low in all five textbooks analyzed in this study. Table 8 displays this 
information. 
 
Table 8 
 
Count of Practice Problems With or Without Accompanying Diagrams 
 

Textbook Name Count of practice problems 
with accompanying diagrams 

Count of practice problems 
without accompanying 

diagrams 
Calculus: Early Transcendentals (9th ed) 10 43 

Calculus: Early Transcendentals (4th ed) 14 31 

Single Variable Calculus (8th ed) 9 60 

Calculus for the Life Sciences (2nd ed) 6 30 

Calculus for Business, Economics, Life 
Sciences, and Social Sciences (14th ed) 

2 46 

Total  41 210 

 
 
 
Opportunities to Engage in Covariational Reasoning  
 

Expository Sections. Opportunities to engage in covariational reasoning in the nine 
expository sections (identified in Table 2) on related rates problems in the five textbooks are limited 
to the lowest two levels of covariational reasoning, namely Level 1 (coordination) and Level 2 
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(direction). The following is a reproduction, from one of the textbooks, of an exemplary opportunity 
to engage in covariational reasoning in the expository section of a textbook: 
 

Union workers are concerned that the rate at which wages are increasing is lagging behind 
the rate of increase in the company’s profits. An automobile dealer wants to predict how 
much an anticipated increase in interest rates will decrease his rate of sales. An investor is 
studying the connection between the rate of increase in the Dow Jones average and the rate 
of increase in the gross domestic product over the past 50 years. In each of these situations, 
there are two quantities-wages and profits, for example-that are changing with respect to 
time. We would like to discover the precise relationship between the rates of increase (or 
decrease) of the two quantities. We begin our discussion of such related rates by considering 
familiar situations in which the two quantities are distances and the two rates are velocities 
(Barnett et al., 2019, p. 222). 
 
This remark provides an opportunity to engage in Level 1 of covariational reasoning as it 

creates an awareness of two quantities (wages and profits) changing in tandem. It also provides an 
opportunity to engage in Level 2 of covariational reasoning as it speaks of the direction of change 
(increasing or decreasing) of the aforementioned quantities. 

Examples. All the related rates examples from the five textbooks identified in Table 2 
provide opportunities to engage in covariational reasoning. However, these opportunities are limited 
to the lowest levels of covariational reasoning, namely Level 1 (coordination), Level 2 (direction), 
and Level 3 (quantitative coordination). The following is a reproduction of a typical example from 
one of the textbooks, in addition to Example 3 that was reproduced in the Methods section, and a 
discussion of the opportunities to engage in covariational reasoning provided in this example: 

Example 4 [Real-world context] [Geometric] (Stewart et al., 2021, p. 250): Car A is traveling 
west at 50 𝑐𝑐𝑚𝑚/ℎ and car B is traveling north at 60 𝑐𝑐𝑚𝑚/ℎ. Both are headed for the intersection of 
the two roads. At what rate are the cars approaching each other when car A is 0.3 𝑐𝑐𝑚𝑚 and car B is 
0.4 𝑐𝑐𝑚𝑚 from the intersection? 

Solution: We draw Figure 4, where 𝐶𝐶 is the intersection of the roads.  
 
Figure 4 
 
Accompanying Diagram-for Example 4 
 

 
 
At a given time 𝑡𝑡, let 𝑥𝑥 be the distance from car 𝐴𝐴 to 𝐶𝐶, let 𝑦𝑦 be the distance from car 𝐵𝐵 to 𝐶𝐶, and 
let 𝑧𝑧 be the distance between the cars, where 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are measured in miles. [It should be noted 
that although Figure 4 is as a generic diagram that represents the given real-world scenario, in the 
specific problem given in Example 4, the horizontal distance between 𝐴𝐴 and 𝐶𝐶 is 0.3 miles, and the 
vertical distance between 𝐵𝐵 and 𝐶𝐶 is 0.4 miles]. 
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We are given that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −50 𝑐𝑐𝑚𝑚/ℎ and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −60 𝑐𝑐𝑚𝑚/ℎ. (The derivatives are negative 

because 𝑥𝑥 and 𝑦𝑦 are decreasing). We are asked to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. The equation that relates 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 is 
given by the Pythagorean Theorem: 

 
𝑥𝑥2 + 𝑦𝑦2 = 𝑧𝑧2 

 
Differentiating each side with respect to 𝑡𝑡, we have 
 

2𝑧𝑧
𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡

= 2𝑥𝑥
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 2𝑦𝑦
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

 

                                                         <=>   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑑𝑑
�𝑥𝑥 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑦𝑦 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�       𝑧𝑧 ≠ 0 

 
When 𝑥𝑥 = 0.3 𝑐𝑐𝑚𝑚 and 𝑦𝑦 = 0.4 𝑐𝑐𝑚𝑚, the Pythagorean Theorem gives 𝑧𝑧 = 0.5 𝑐𝑐𝑚𝑚, so 
 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡

=
1

0.5
[0.3(−50) + 0.4(−60)] 
= −78 𝑐𝑐𝑚𝑚/ℎ 

 
The cars are approaching each other at a rate of 78 𝑐𝑐𝑚𝑚/ℎ. 
 
In the preceding solution to Example 4, the statement “at a given time 𝑡𝑡, let 𝑥𝑥 be the 

distance from car 𝐴𝐴 to 𝐶𝐶, let 𝑦𝑦 be the distance from car 𝐵𝐵 to 𝐶𝐶, and let 𝑧𝑧 be the distance between 
the cars” provides an opportunity to engage in Level 1 (coordination) of covariational reasoning as it 
provides evidence of the three quantities 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 changing simultaneously with changes in time. 
In the same solution, the remark that “the derivatives are negative because 𝑥𝑥 and 𝑦𝑦 are decreasing” 
provides an opportunity to engage in Level 2 (direction) of covariational reasoning. Finally, 
quantifying the quantities 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑦𝑦/𝑑𝑑𝑡𝑡 through the comment “we are given that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

−50 𝑐𝑐𝑚𝑚/ℎ and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −60 𝑐𝑐𝑚𝑚/ℎ” provides an opportunity to engage in Level 3 (quantitative 
coordination) of covariational reasoning. 

Practice Problems. Practice problems on related rates problems in the five textbooks either 
do not provide opportunities to engage in covariational reasoning at all such as Practice Problem 2 
that was reproduced in in the Methods section, or they provide opportunities to engage at the 
coordination and direction levels of covariational reasoning (i.e., Levels 1 and 2 of covariational 
reasoning). Indeed, of the 251 practice problems (see Table 2), 25 practice problems do not provide 
opportunities to engage in covariational reasoning and the remaining 226 problems provide 
opportunities to engage at the coordination and direction levels of quantitative reasoning. The 
following is a reproduction of a representative practice problem from the five textbooks: 

Practice Problem 39 [Real-world context] [Geometric] (Hughes-Hallett et al., 2021, p. 260): 
The radius of a spherical balloon is increasing by 2 𝑐𝑐𝑐𝑐/𝑠𝑠𝑠𝑠𝑐𝑐. At what rate is air being blown into the 
balloon at the moment when the radius is 10 𝑐𝑐𝑐𝑐? Give units in your answer. 

This problem provides an opportunity to engage in Level 1 (coordination) of covariational 
reasoning in that it presents the opportunity to visualize how the quantities of radius and volume are 
changing in tandem with changes in time. In addition, the question clearly states that the radius is 
increasing [and while not stated, it can be inferred that the volume is increasing as air is blown into 
the balloon], thus providing an opportunity to engage in Level 2 (direction) of covariational 
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reasoning. Like Practice Problem 39, most of the practice problems in the five textbooks are focused 
on calculational knowledge rather covariational reasoning. That is, they tend to emphasize 
performing calculations over posing questions that promote making sense of how different 
quantities are changing in relation to each other as time changes. 

 
Discussion and Conclusions 

 
Even though the five textbooks do not have opportunities to engage in quantitative 

reasoning in their expository sections on related rates problems, the textbooks provide ample 
opportunities to engage in quantitative reasoning through 24 examples and 226 (out of 251) practice 
problems on related rates problems, respectively. The prevalence of opportunities to engage in 
quantitative reasoning in the textbooks is in compliance with growing calls from several researchers 
and mathematics educators to include such opportunities in undergraduate mathematics education 
(e.g., Castillo-Garsow, 2012; Moore, 2014; Thompson, 2011). Arguably, the fact that opportunities 
to engage in quantitative reasoning are plentiful may suggest that some of the previously reported 
students’ difficulties, such as interpreting quantities (e.g., Azzam et al., 2019; Mkhatshwa, 2020a, 
Kottath, 2021) and making sense of relationships among quantities (e.g., White & Mitchelmore, 
1996), with engaging in quantitative reasoning when solving related rates problems may originate 
from other sources (e.g., classroom instruction), and not necessarily from calculus textbooks. 

Findings from previous research on related rates problems indicate that diagrams [pictures of 
situations] are helpful when solving geometric related rates problems (e.g., Engelke-Infante, 2021; 
Mkhatshwa, 2020a). In general, it is commendable that all the textbooks considered in this study 
provide a substantial number of opportunities (via examples) to work with diagrams when solving 
related rates problems. Specifically, 18 of the 24 examples on related rates problems presented in the 
five textbooks have accompanying diagrams, thus promoting the use of diagrams when working 
with related rates problems. On the contrary, opportunities promoting the use of diagrams via 
practice problems when solving related problems are disproportionately low in all five textbooks. In 
particular, of the 251 practice problems on related problems found in the five textbooks, only 41 
practice problems have accompanying diagrams. I thus recommend that textbook selection 
committees in mathematics departments consider, among other things, the proportion of examples 
and practice problems providing opportunities to work with diagrams when adopting calculus 
textbooks. Similarly, calculus instructors are encouraged to regularly use diagrams (when 
appropriate) in their teaching of related rates problems in calculus. It would also benefit students if 
instructors could include explicit prompts on homework assignments or even exams (on related 
rates), encouraging students to create and use diagrams (when appropriate) to support their 
quantitative reasoning when solving related rates problems.  

Mathematizing a great majority of the geometric-related rates tasks found in the five 
textbooks is, for the most part, straightforward and often involves using slight variations of the 
Pythagorean theorem or recalling geometric formulas such as the formula for the volume of a 
sphere. In addition, nearly all the non-geometric related rates problems found in the five textbooks 
do not need to be mathematized, as the equations relating the quantities involved in these problems 
are provided. Of the five textbooks considered in this study, the proportion of non-geometric 
related rates problems (compared to geometric related rates problems) was extraordinarily low in 
two of the textbooks, about the same in two other textbooks, and significantly high in one other 
textbook. A common theme from a growing number of studies on related rates problems is that 
mathematizing these types of problems is often a challenge for many students in calculus (e.g., 
Azzam et al., 2019; Jeppson, 2019; Martin, 2000; Mkhatshwa, 2020a; White & Mitchelmore, 1996). 
To this end, I recommend that calculus textbook authors consider including a fair balance of 
geometric and non-geometric related rates problems in their textbooks, and most importantly, 
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including related rates problems that require engaging in deep and meaningful aspects of quantitative 
reasoning that go beyond simply recalling and using geometric formulas when mathematizing these 
problems. The same consideration applies to calculus instructors in their teaching of related rates 
problems, or textbook selection committees in mathematics departments, when adopting calculus 
textbooks for their departments.  

Opportunities to engage in covariational reasoning (Carlson et al., 2002) provided in the five 
textbooks are not only minimal, but also limited to the lowest levels of covariational reasoning, 
namely coordination, direction, and quantitative coordination. Specifically, I did not find any 
opportunities to engage in the highest (i.e., more sophisticated) levels of covariational reasoning, 
namely average rate and instantaneous rate in the expository sections, examples, and practice 
problems on related rates problems, respectively, included in the five textbooks. Findings from 
research indicate that students’ covariational reasoning abilities are typically limited to the lowest 
levels of covariational reasoning when solving related rates problems (e.g., Engelke, 2007). Other 
research has found that students show little or no evidence at all of engaging in covariational 
reasoning when dealing with derivatives, which are crucial elements of related rates problems (e.g., 
Carlson et al, 2002; Jones, 2017; Nagle et al., 2013). 

In light of the fact that opportunities to engage in covariational reasoning, let alone 
opportunities to engage in the highest levels of covariational reasoning, are scanty in the five 
textbooks, I recommend that calculus textbook authors include plenty of opportunities to engage in 
covariational reasoning when creating expository sections, examples, and practice problems on 
related rates problems. This is especially important because evidence from research indicates that 
most student learning is often directed by the textbook rather than the instructor (e.g., Alajmi, 2012; 
Begle, 1973; Kolovou et al., 2009, Törnroos, 2005; Wijaya et al., 2015). In fact, Reys et al. (2004) 
posited that the presentation of instructional content during course lectures closely follows the 
presentation of such content in mathematics textbooks, an argument supported by other scholars 
(e.g., Blazar et al., 2020; Polikoff et al., 2021). Furthermore, I recommend that textbook selection 
committees adopt textbooks that provide such opportunities in abundance in light of the crucial role 
that covariational reasoning plays in students’ understanding of calculus topics, including related 
rates problems. Finally, I recommend that calculus instructors create and use, during classroom 
instruction, more tasks that could support students in developing strong covariational abilities (i.e., 
support them in engaging in the highest levels of covariational reasoning). This could include 
designing tasks that require students not only to create diagrams, but also to make sense of these 
diagrams to successfully solve related rates problems. Additionally, this might mean calculus 
instructors will have to design and use related rates problems that have realistic and essential 
contexts during classroom instruction. This is particularly important because evidence from a recent 
study on the teaching of related rates problems indicated that related rates problems were not varied 
and tended to be similar from one calculus textbook to another (Mkhatshwa, 2023).  

In conclusion, I note that the five calculus textbooks examined in this study are arguably 
representative of a great majority of widely used textbooks in the teaching of regular, business, and 
life sciences calculus, respectively, in the United States. I further note that results from the present 
study are, to a great extent, consistent with findings from my recent study (Mkhatshwa, 2022) that 
examined learning opportunities about ordinary and partial derivatives provided by two calculus 
textbooks. Specifically, both studies have found that calculus textbooks by and large provide enough 
quantitative reasoning opportunities, and that there is a deficiency of covariational reasoning 
opportunities, especially opportunities to engage in the highest levels of covariational reasoning, in 
the same textbooks. Based on the findings of these two studies and a growing number of calls from 
renowned scholars and educators to include covariational reasoning opportunities in the study of 
calculus, I appeal to calculus textbook authors to substantially increase covariational reasoning 
opportunities in their textbooks in virtually every topic (e.g., derivatives, related rates problems, 
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differentials, optimization problems, etc.). This is especially true for opportunities to engage in the 
highest levels of covariational reasoning, namely average rate and instantaneous rate, which are 
currently lacking in most widely used calculus textbooks.  

 
Study Limitations  
 

I conclude this paper by highlighting the study limitations. First, the textbooks analyzed in 
the present study are widely used in the teaching of calculus in the United States. Consequently, 
findings of the present study may not extend beyond the United States. It might be important for 
future research to examine similar opportunities to learn provided by other widely used calculus 
textbooks in other parts of the world. Second, Pershing (2002) remarked that document analysis can 
be used as a stand-alone data-collection procedure or as a precursor to collecting new data. In this 
study, document analysis was used as a stand-alone data collection procedure. I, however, posit that 
there might be added value in using document analysis in conjunction with other methodologies. 
For instance, it might be helpful to present researchers’ findings from conducting a document 
analysis alongside perspectives of the authors of the documents that were analyzed. In the context of 
the present study, it would have been beneficial to present the textbooks author’s perspectives 
(obtained via interviews or questionnaires) alongside the results obtained by analyzing the five 
textbooks examined in the study. Third, the quantitative reasoning and covariational reasoning codes 
used in the present study are mostly mutually exclusive. In other words, I did not consider tasks that 
provide opportunities to engage in both quantitative and covariational reasoning in greater detail. 
This could be a subject for future research. This is especially compelling because these two codes 
may not necessarily be mutually exclusive. Specifically, geometric related rates problems that are 
situated in real-world contexts provide opportunities for engaging in the two modes of reasoning, 
namely quantitative and covariational. Fourth, the data was coded by one researcher. Consequently, 
inter-rater reliability was not established. Follow-up research will likely involve several researchers to 
establish inter-rater reliability, among other potential benefits of conducting collaborative research. 
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