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International Collaboration in Science and Mathematics Education 
 
Sarah Quebec Fuentes 
Texas Christian University 
 
Mark A. Bloom 
Dallas Baptist University 
 

The Electronic Journal for Research in Science & Mathematics Education is the flagship journal of the 
International Consortium for Research in Science & Mathematics Education (ICRSME). ICRSME 
was conceived by Dr. Arthur L. White in 1983 as a result of working on various projects in Central 
America and the Caribbean under the auspices of The Ohio State University and the United States 
Information Agency (USIA). The USIA was in effect from 1953 through 1999 (National Archives, 
2020). The two-pronged mission of the USIA guided its activities: 

To seek to inform others about American life and values, policies, and interests as a nation; 
and, if possible, to eliminate misperception and move others to action in ways that serve the 
national interest; and second that mutual understanding borne of people-to-people 
communication matters, and that USIA should serve as a facilitator to bring Americans and 
their academic and other nongovernmental sector institutions into substantive contact with 
influential counterparts abroad through exchanges and other programs. (United States, p. 
718) 

By 1985, a variety of cooperative and collaborative projects were underway across institutions and 
countries, leading to ICRSME’s first consultation in 1986 hosted in Port of Spain, Trinidad and 
Tobago. Subsequently, Dr. White and Dr. Donna F. Berlin organized 14 consultations across 
Central and South America and the Caribbean over three decades. 

The mission of ICRSME is the advancement of science and mathematics education in the 
participating countries. This mission is based on the premise that all peoples can benefit from the 
knowledge and experiences of their local, national, and international colleagues. To serve the 
mission, the consortium model includes five interrelated goals: 

1. Designing, facilitating, and conducting research and development toward the improvement 
of science and mathematics teaching and learning 

2. Developing academic exchange programs between universities in order to broaden the 
educational experiences of students and faculty 

3. Acting as an impetus in establishing ties between the local, state, and national educational 
associations in the participating countries 

4. Identifying the particular science and mathematics education needs and issues facing current 
and emerging under-represented populations in the participating countries and directing 
research and development to address those needs and issues 

5. Promoting collaborative efforts among scholars in the participating countries 
As ICRSME continues to evolve, the organization plans to consider its mission and these goals and 
how they can be met. This editorial serves as an introduction to a series of editorials about fostering 
effective and genuine international collaboration in science and mathematics education. 
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Genuine Collaboration 
 
 In the process of developing genuine and productive collaboration, partners may encounter 
challenges. Such issues include differences in cultures and norms of diverse settings, variation in 
points of view and body-of-knowledge of persons involved, power structures, disparate motivations 
for involvement, weak communication about the goals of the work, and a lack of trust between 
partners (Adamson & Walker, 2011; Barnett et al., 2006; Buysse et al., 2003; Sim, 2010). One way to 
counter these challenges is to be purposeful in identifying the type of collaboration desired and the 
approach to building this collaboration, ensuring critical components are present at the outset.  
 The construct of communities of practice can serve as a framework to guide collaborative work. 
Communities of practice are “groups of people who share a concern, set of problems, or passion 
about a topic, and who deepen their knowledge and expertise in this area by interacting on an 
ongoing basis” (Wenger et al., 2002, p. 4). Wenger et al. (2002) describe three core characteristics of 
communities of practice: “a domain of knowledge, which defines a set of issues; a community of 
people who care about this domain; and the shared practice that they are developing to be effective 
in their domain” (p. 27). For instance, ICRSME is a community of people who care about the 
learning and teaching of science and mathematics. Moving forward, the organization plans to 
consider how to purposefully develop a shared practice. 
 Two critical premises ground the formation of communities of practice: a shared goal 
(Clausen et al., 2009) and the co-construction of knowledge (Palinscar et al., 1998; Sim, 2010). The 
establishment of both of these conditions has been found to result in genuine collaboration with 
opportunities to learn for all parties involved (Quebec Fuentes & Spice, 2017). Quebec Fuentes and 
Spice differentiate between shared but given goals and shared beyond given goals. For example, with 
ICRSME, a shared but given goal is the advancement of science and mathematics education. A 
shared beyond given goal would focus on an aspect of the learning and teaching of science and 
mathematics in a particular setting and relevant to the parties involved. In other words, a shared 
beyond given goal is a mutually established endeavor centered on a specific area of need (Buysee et 
al., 2001). 

Effective collaborations also move away from an authoritarian, hierarchical, or colonialist 
model of knowledge dissemination. A foundational aspect of communities of practice is a shift from 
attention to individual ideas to group interactions (Buysee et al. 2003). In other words, “learning is 
viewed as distributed among many participants within the community in which people with diverse 
expertise (i.e., experts, novices, and those in between) are transformed through their own actions 
and those of other participants” (Buysee et al., 2003, p. 266). This concept of distributed expertise 
(Pugach, 1999) emphasizes the co-construction of knowledge with various stakeholders sharing 
ideas and perspectives (Palinscar et al., 1998; Sim, 2010).  
 Factors that enable the development of a shared goal and an environment for the co-
construction of knowledge include conflict, communication, trust, and reflection. Conflict can be 
viewed as an undesirable situation or as an ongoing process that has the potential to lead to learning 
(Achinstein, 2002, p. 425). If conflict is perceived as a problem, participants avoid examining their 
beliefs and assumptions and instead establish a culture of nice (MacDonald, 2011, p. 46) through feigned 
politeness (Hargreaves, 2001), superficial effort (Barnett et al., 2006), and contrived collegiality (Hargreaves, 
1994). On the other hand, if conflict is embraced, participants “acknowledge, solicit, and own 
conflict by critically reflecting upon differences of belief and practice,” opening up space for “active 
dissent and opportunities for alternative views,” the transformation of the status quo, and 
organizational learning (Achinstein, 2002, p. 441). 
 To support growth through the process of conflict, norms of communication must be 
established. The particular means of communication within a community are unique (Sim, 2010) 
since the community builds a shared language through their open and critical dialogue (Wenger et 
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al., 2002). Additionally, trust amongst participants is essential for communication (Barnett et al., 
2006; Palinscar et al., 1998). “Trust can be established if the community assumes that responsibility 
for understanding is shared, and authority for knowing is internal and collective” (Palinscar et al., 
1998, p. 9). Trust and respect within a community allows for critical reflection centered on the 
collaborative sharing, listening, challenging, and reconstructing of ideas (Wenger et al., 2002). 
Reflection can be integrated into the discourse through informal or purposefully structured 
processes (Adamson & Walker, 2011; Quebec Fuentes & Spice, 2017). The purpose of the reflection 
is twofold; members of the community consider their progress toward their joint learning endeavor 
as well as monitor the collaborative process itself (Buysee et al., 2001; Quebec Fuentes & Spice, 
2017).  
 

International Collaboration: Challenges and Opportunities 
 
 International collaboration faces the same aforementioned challenges as well as some 
additional considerations and obstacles. Some issues are logistical, such as working around time 
differences and different academic calendars (Peled & Rozansky, 2014). Other deeper considerations 
address who is included and how they are involved. The concept of border politics is the process of 
“negotiating the bounds of membership and beliefs of a given community” (Achinstein, 2002, p. 
426), and Atweh and Keitel (2007) examine border politics from a social justice lens.  

In particular, Atweh and Keitel (2007) examine five signs of social injustice in international 
collaboration (exploitation, marginalization, powerlessness, cultural imperialism, and violence). 
Exploitation in research endeavors occurs when the accomplishments and perspectives of one group 
is furthered to the detriment of others. Additionally, research foci and methods of some countries 
are valued more in the international community, pushing the problems of practice (and ways of 
addressing them) in other countries to the margins. Further marginalization stems from language 
and economics. For instance, the primary language(s) used to communicate within a community 
could force  members to the periphery of or completely exclude them from involvement (Adamson 
& Walker, 2011). Some academics may not be able to participate in international scholarly activities, 
such as conferences, due to their cost. This lack of involvement results in powerlessness. Cultural 
imperialism is then evidenced in “the non-critical transfer of curricula and research results from one 
country with a certain perceived higher status to another” (Atweh & Keitel, 2007, p. 14). Lastly, 
linking economic support from more affluent countries to cultural imperialism is viewed as symbolic 
violence. 

International collaboration has the potential to counter these injustices if grounded in the 
premise that people learn from each other through such collaboration (Atweh & Keitel, 2007). First, 
the borders of the community need to be expanded to include members from different cultures and 
contexts. Communication and conflict allows for the negotiation, rather than the imposition, of the 
border politics by members of the community (Achinstein, 2002). Second, policies and practices at 
all levels (local, state/provincial, national, and international) are influenced by historical, political, 
economic, and social circumstances of a setting. When international peers share their funds of 
knowledge and compare these influences across locations through dialogue, a greater understanding 
of each context develops (e.g., Winton & Pollack, 2014). 

Lastly, international groups must regularly reflect on their collaboration to ensure that it 
maintains socially just actions.  

International contacts and exchanges in mathematics and mathematics education have … 
increased in the new age of globalization and will continue to exponentially increase in the 
future with further developments in technology, ease of travel and population movements. 
While we do not construct such contacts as necessarily either good or bad, the outcomes of 
these processes should be carefully scrutinized world wide as to the benefits and losses that 
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might arise from them. This can only be achieved through deliberate and targeted reflection 
and debate. (Atweh et al., 2003, p. 224). 

The following questions can guide such deliberation (Atweh & Keitel, 2007): 
1. Who is included in the international collaboration? 
2. How are the various members’ included in the activity? 
3. Are decisions being made in a just and fair way? 
4. Are the means to work together effectively and with equal rights collaboratively 

considered? 
5. Who benefits from the international collaboration? 
6. Whose views are expressed in the products of the international collaboration? 
7. Whose knowledge is being represented in the international collaboration? 

As indicated by the fourth question, such inquiries should be consistently interrogated by all 
partners. 
 

Conclusion 
 

ICRSME and EJRSME are committed to promoting genuine international collaboration to 
advance science and mathematics education. This EJRSME editorial begins a series that will examine 
international collaborations and reflect on the opportunities and potential pitfalls that such 
relationships can present. As the flagship journal of ICRSME, we hope these editorials will inspire 
you to consider ways in which you can engage with colleagues in genuine collaboration through 
future international consultations and virtual conferences.  

The theme of our upcoming virtual conference, taking place on March 12, 2022, is 
International Collaboration in Science and Mathematics Education. We will feature Dr. Grace Bascope, from 
the Botanical Research Institute of Texas (BRIT), sharing Lessons Learned from Collaborative Place-Based 
Learning Programs in Yucatan, Mexico and Belize as well as Dr. Ricardo Lleonart, del Instituto de 
Investigaciones Científicas y Servicios de Alta Tecnología de Panamá, sharing INDICASAT AIP - A 
Model Institute for Innovation in Research and Education. We look forward to learning from these 
international collaborators as well as the many ICRSME friends who will be presenting both 
virtually (asynchronously) and in round table discussion rooms.  

At the virtual conference, we will be announcing a newly formed ICRSME ad hoc 
committee that will be focused on answering some of the questions posed in this editorial. This 
diverse and international committee will examine the ICRSME mission statement and goals as well 
as other ICRSME activities and opportunities to determine if we are doing all we can to foster the 
genuine collaboration between participating countries that we desire. 

As we strive to deepen our collective understanding of genuine international collaboration in 
science and mathematics education, we hope to learn from those who have engaged in such work 
already. We encourage you to share your experiences through multiple venues hosted by ICRSME 
(ICRSME Newsletter, EJRSME, virtual conferences, and biennial consultations).  
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ABSTRACT 
 
This paper presents a synthesis of the literature exploring the teaching and learning of geometry and 
the role that mathematical representations can play in enriching geometry experiences for our 
students. Geometry is the only content domain to be taught in all PK-12 grades, however, from 
historical trends in international assessment data, it continues to be a low scoring area for students 
in the United States. This paper is organized by the following: (1) theories guiding the teaching and 
learning of geometry in the U.S.; (2) teaching and learning of geometry in the U.S.; and (3) the role 
of mathematical representations in geometry. In order for students to appreciate and experience the 
wonder, joy, and beauty of geometry in a consistent and coherent manner, they need geometry 
learning experiences that leverage high quality tasks with opportunities in translating between and 
within multiple representations, and engage them in discovering connections within geometry, 
between geometry and the other mathematics content domains, and between geometry and their 
world. 
 

 
Keywords: geometry, high quality tasks, mathematical representations, mathematics education 
 

Introduction 
 

In the 2001 National Council of Teachers of Mathematics (NCTM) Yearbook, Albert Cuoco 
challenged the mathematics education community to think beyond ideas of content and pedagogy, to 
how our students learn (NCTM, 2001). Most recently, one way NCTM has addressed this call is 
through the introduction of the eight mathematics teaching practices (NCTM, 2014). The 
aforementioned practices provide students the opportunity to access mathematics through multiple 
entry points while leveraging multiple mathematical representations (i.e. visual, symbolic, verbal, 
contextual, and physical) (Lesh et al., 1987). During the past decades, mathematical representations 
have been defined in multiple ways (Goldin, 2014; Huinker, 2015; NCTM, 2014). For the purpose of 
this paper, mathematical representations will refer to the five types that were initially defined by Lesh 
and colleagues (1987), which we describe in more depth later in this paper. Huinker and Bill (2017) 
refer to the importance of students using multiple mathematical representations - both between 
representation types and within the same representation type. The ways in which these connections 

https://orcid.org/0000-0002-7967-0802
https://orcid.org/0000-0001-5041-5050
https://orcid.org/0000-0001-8211-1246
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among mathematical representations can be leveraged - specifically in geometry instruction - will also 
be discussed in this paper.  

Some effective uses of mathematical representations include connecting instruction with 
students’ experiences and interests (NCTM, 2018). Teaching geometry is crucial in facilitating student 
opportunities to make connections with the real world (Usiskin, 1980), in addition to experiencing 
geometry in an integrated and active manner capitalizing on the wonder, joy and beauty of examining 
the world (NCTM, 2020a). The study of geometry and measurement provides rich opportunities for 
children to both explore and visualize the two- and three-dimensional, and represent objects and the 
relationships between them, and enrich and connect geometrical ideas to other mathematical domains 
and the world around them (NCTM 2020a, 2020b).  

Gonzáles and Herbst (2006) identify four aims for the teaching of geometry: (a) a formal 
argument: geometry teaches to use logical reasoning; (b) a utilitarian argument: geometry serves to 
prepare students for the workplace; (c) a mathematical argument: geometry for the experience and the 
ideas of mathematicians; and (d) an intuitive argument: geometric expression helps students interpret 
their experiences in the world. Prior research (i.e. International Commission on Mathematical 
Instruction, ICMI, 1995) has shown that there is no linear, hierarchical path from beginning to more 
advanced geometry – geometric ideas must be examined, reconsidered, reimagined, and refined at 
different stages from different viewpoints.  

Among mathematicians and mathematics educators, there is widespread agreement that 
teaching geometry should start at an early age and should continue throughout the entire mathematics 
curriculum (ICMI, 1995). This is also illustrated in the Common Core State Standards for Mathematics 
(2010) progression (and other similar college and career readiness standards) which list geometry as 
the only domain taught in all PK-12 grades. This makes it evident that current reform-based 
curriculum supports revisiting geometric ideas, however, historically speaking, “Geometry has been 
treated solely as geometry and not as a subject, which in addition to being a splendid example of 
deductive reasoning, important and interesting in itself, can also serve the purpose of creating a critical 
attitude of mind toward deduction and thinking in general” (NCTM, 1940, p. 39). In many countries, 
geometry has also lost its former central position in mathematics teaching – the subject is often 
somewhat ignored or confined to the teaching of facts about figures and their properties (ICMI, 1995). 
In the U.S., students revisit the subject every year, yet, they are often given too little exposure to 
geometrical thinking in grades K–8, particularly in the middle grades, so their understanding of 
geometry does not always develop to deeper levels of analysis (Clements, 2003; Clements & Battista, 
1992; Driscoll, 2007; Steele, 2013). Several researchers have supported the idea that an increased focus 
on researching and understanding the place of geometry in curriculum would be well advised (Fuys et 
al., 1988; Sinclair & Bruce, 2015).  

While ideas about the use of mathematical representations have been researched, as well as 
about geometry curriculum, there is little literature that synthesizes both. Individual representations 
cannot fully describe a mathematical construct, and each has different advantages. Therefore it 
becomes crucial that we expose students to using multiple mathematical representations. This allows 
students to appropriately choose the representation(s) that best works for the given context (Duval, 
2002) and for themselves as learners. This literature review provides a synthesis on the teaching and 
learning of geometry at the PK-12 level and the role that mathematical representations can play in 
enriching the geometry experience for our students. 

The following research questions guided this review of literature:  
(1) Which frameworks have guided the teaching and learning of geometry in the U.S.? 
(2) What does the teaching and learning of geometry in the U.S. look like? 
(3) What is the role of mathematical representations in the teaching and learning of geometry? 
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Literature Search Procedures 
 
In order to conduct a thorough review of scholarly literature, an organized search process was 

used drawing from a variety of databases including EBSCO Academic Search Premier, Education 
Resources Information Center (ERIC), Science Direct, and JSTOR. The search terms used include 
“geometry” AND “representations”, “geometry curriculum”, “geometry curriculum” AND 
“representations”, and “mathematical representations”. This initial search resulted in more than 200 
pieces of literature which was then narrowed to include only those written only in English. While the 
authors acknowledge the influence of international perspectives on the teaching and learning of 
geometry in the U.S., for the purpose of this literature review, any papers discussing this topic in non-
U.S. settings were excluded in order to maintain the focus on U.S. PK-12 education. Additionally, any 
not relating to the previously stated operational definition of mathematical representations for this 
paper (e.g., articles relating to racial or cultural representations in mathematics) were also excluded as 
they were deemed beyond the scope of this study. After conducting this search, additional sources 
were found using the reference lists of each included article. In all, sixty-seven items of scholarly 
literature consisting of peer-reviewed journal articles and books were included in this paper. The 
results of this literature search determined the structure of this paper which is organized by the 
following: (1) frameworks guiding the teaching and learning of geometry in the U.S.; (2) teaching and 
learning of geometry in the U.S.; and (3) the role of mathematical representations in the teaching and 
learning of geometry in the U.S..  
 
Frameworks Guiding the Teaching and Learning of Geometry in the U.S. 
 

While the focus of this literature review is to discuss the role of mathematical representations 
in the teaching and learning of geometry, it is necessary to first consider the frameworks that have 
influenced geometry instruction. For purposes of this paper, we define frameworks broadly as 
contributions that are theoretical frameworks, conceptual frameworks, conceptual models, theories, 
or similar. This section addresses research question one through a discussion of eight frameworks 
which provide the theoretical background to guide and support research on the teaching and learning 
of geometry. These frameworks found through the literature search are foundational in understanding 
how geometry teaching and learning has evolved over time. A summary is provided in Table 1, and 
details for each framework is provided in this section.  

First, Van Hiele’s (1986) framework postulates that the five levels of geometric thinking were 
sequential and hierarchical, and that for students to attain the next level, they must pass through the 
preceding one. These five levels are visual, analytic, abstract, deductive, and rigor which describe 
children’s levels of thought in learning geometry. While some previous research suggested that these 
levels accurately describe the development of students’ geometric thinking (Burger & Shaughnessy, 
1986; Clements & Battista, 1992), in recent decades, researchers are beginning to argue that students 
may develop their thinking in these various levels simultaneously (Battista, 2007; Clements, 1999). 
These later researchers maintain that the third framework, abstraction theory (Battista & Clements, 
1996), which proposes that learning is a recursive cycle through phases of action, reflection, and 
abstraction - may reflect a more accurate way to describe students’ geometric thinking.  

The second framework– the theory of figural concepts (Fischbein, 1993) - attempted to 
interpret geometrical figures as mental entities that simultaneously possess conceptual and figural 
properties. According to this notion of figural concepts, Jones (1998) describes that geometrical 
reasoning is characterized by the interaction between the figural and the conceptual aspects. It is 
necessary for students to form connections between both the conceptual (abstract) representation and 
the visual representation, however that is generally where students make the most errors (Jones, 1998).  
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Table 1 
 
Frameworks for Teaching and Learning Geometry 
 

Name Description 

van Hiele (1986) Children move through five levels of thought in geometry - 
visual, analytic, abstract, deductive, and rigor.  

Theory of Figural Concepts 
(Fischbein, 1993) 

Geometric figures are mental entities which simultaneously 
possess conceptual and figural properties. 

Abstraction  
(Battista & Clements, 1996) 

The process by which the mind registers objects, actions, and 
ideas in consciousness and memory, and further describes two 
forms – spatial structuring, and mental models.  

Cognitive Processes 
(Duval, 1998) 

Geometrical reasoning involves three kinds of cognitive 
processes which fulfill specific epistemological functions: 
visualization processes, construction processes, reasoning 
processes. 

Geometric habits of mind 
(Driscoll, 2007) 

Teachers need to develop an understanding of geometric 
thinking and their own geometric habit of mind including: 
Reasoning with relationships, generalizing geometric ideas, 
investigating invariants, balancing exploration and reflection. 

Concept learning and the objects of geometric 
analysis 
(Battista, 2009) 

Students need to analyze objects (physical objects, concepts, and 
concepts definition) and mental entities to understand and reason 
about mathematics. 

Diagrams and representations  
(Battista, 2009) 

Both diagrams, and physical objects play a major role in 
geometry. 

Spaces for geometric work (SGW) 
(Goméz-Chacón & Kuzniak, 2015) 

Describes the work that people (students, teachers, 
mathematicians, etc.) perform when they solve geometric tasks. 

 
Duval (1998), illustrating the fourth framework, approached geometric reasoning from a 

cognitive and perceptual lens. He described three cognitive processes which fulfill specific 
epistemological functions: (1) visual processes which refer to the visual representation of a geometrical 
statement or the heuristic exploration of a complex geometrical situation; (2) construction processes 
which refer to the use of various tools; and (3) reasoning processes which refers to the discursive 
processes for the extension of knowledge, for explanations, and for proofs. He further stated that 
these processes can be performed separately. In fact, he suggested that these three processes should 
be developed separately, and that it is necessary to differentiate between them before using them in 
coordination with one another.  

In the fifth framework, Driscoll (2007) shares that teachers need to foster geometric thinking 
in their classrooms so that students will learn to use geometric thinking as a complement to algebraic 
thinking in problem solving. He describes that people with mathematical power perform thought 
experiments, invent things, look for invariants or patterns, make reasonable conjectures, describe 
things both casually and formally, think about methods, strategies, and processes, visualize things, and 
seek to explain why things are as they see them. To accomplish this goal, he proposes four geometric 
habits of mind that teachers need to develop which are: reasoning with relationships, generalizing 
geometric ideas, investigating invariants, and balancing exploration and reflection. These habits of 
mind allow teachers productive ways of thinking that enable them to support their students in learning 
and application of formal mathematics.  



10     DESAI, BUSH, & SAFI 

The sixth and seventh frameworks, by Battista (2009), further discuss the need for forming 
concepts from physical objects. He described “geometry instruction and curricula generally neglect 
the process of forming concepts from physical objects and instead focus on using diagrams and 
objects to represent formal shape concepts” (p. 97). Often, instruction moves too quickly away from 
physical manipulatives to diagrams and abstract thinking, or teachers avoid using manipulatives all 
together, and as a result students often incorrectly connect attributes of a diagram or object to the 
geometric concept. Students experience a world filled with physical objects, and in order to provide 
them opportunities to connect mathematics to their world, these physical objects play a crucial role.  

In the eighth framework, spaces for geometric work (SGW) explained by Goméz-Chacón & 
Kuzniak (2015), describes the process that is performed when thinking about geometric tasks. SGW 
describes two interconnected planes: the epistemological and the cognitive (Kuzniak, 2015). The 
epistemological plane contains three intersecting elements: (a) real and local space as material support 
with a set of concrete and tangible objects; (b) artifacts such as drawing instruments or software; and 
(c) a theoretical frame of reference based on geometric definitions and properties. The cognitive plane 
(adapted from Duval, 1998) is comprised of three cognitive processes: (a) visualization process 
connected to the representation of space and material support; (b) construction process determined 
by instruments (ruler, compass, etc.); and (c) a discursive process which conveys argumentation and 
proofs. Both the epistemological and cognitive planes are interconnected through the synthesis 
between three different modes of knowledge: intuition, experiment, and deduction and both need to 
be articulated in order to ensure complete geometric work (Houdement & Kuzniak, 2003). Although 
the SGW model was developed for geometry it can also be generalized and connected to other 
mathematical domains.  

In summary, these eight frameworks represent some of the long-standing and current 
frameworks on geometry teaching and learning. These frameworks lay the necessary foundation for 
further understanding research on the teaching and learning of geometry in the U.S.. Mathematics is 
filled with connections between and within domains and the use of mathematical representations allow 
us to make and leverage these connections. The world students live in is full of shapes with some 
exhibiting beautiful consistent patterns while others seem to lack symmetry or regularity. 
Opportunities that allow students to experience the “harmony, beauty, order, clarity, wonder, 
curiosity, and enjoyment of mathematics” (NCTM, 2020b, p. 15) are important in their development 
of a positive mathematical identity. While simple formulas are used in school mathematics, they do 
not account for the irregularity. Therefore, it is crucial for our students to be exposed to the messiness 
in mathematics that exists in the world around them, and having a toolbox of multiple mathematical 
representations allows them to make sense of this (Organisation for Economic Co-operation and 
Development, OECD, 2018). This idea of making important and necessary connections using various 
types of mathematical representations (i.e. Lesh et. al, 1987; Huinker & Bill, 2017) - visual, symbolic, 
verbal, contextual, and physical) during geometry instruction will be explored further in a later section.  
 

Teaching and Learning of Geometry in the U.S. 
 

This section addresses research question two to understand why representations as well as 
connections among representations are essential in PK-12 mathematics classrooms, specifically 
focusing on both the traditional and current approaches to teaching and learning of geometry. 
Geometry is one of the oldest branches of mathematics, and its origins can be traced back to a wide 
range of cultures and civilizations. Yet, the aims and goals of modern geometry instruction are widely 
debated (Jones, 2000; The Chicago School Mathematics Project, 1971). Jones (2000) states “The 
fundamental problem in the design of the geometry component of the mathematics curriculum is 
simply that there is too much interesting geometry, more than can be reasonably included in the 
mathematics curriculum” (p. 75). At least in North America, in over the past hundred years, high 
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school geometry was comprised of students using Euclid’s Elements (Sinclair, 2008). In the 1960s, 
geometry was then explicitly introduced as a topic in primary schools, and focused primarily on the 
study of two-dimensional geometry to prepare students for Euclidean geometry (ICMI, 1995).   

More recent studies claim similar purposes for learning geometry and further extend the 
purpose of elementary school geometry to focus on spatial reasoning (Clements & Battista, 1992; 
Battista, 2007), and secondary geometry instruction to focus on dynamic geometry software 
(Hollebrands, 2003) and connections between geometry to algebraic and symbolic manipulations 
(Knuth, 2000). Geometry serves as an essential foundation for space and shape, and also draws on 
elements of other mathematical ideas such as spatial visualization, measurement and algebra (OECD, 
2018). “[Geometry and measurement] are among the first mathematical ideas to emerge for young 
children as they interact with their environment and they deepen through early childhood and 
elementary mathematics” (NCTM, 2020a, p. 115). Table 2a and 2b include an overview of current 
geometry standards in the U.S. as denoted by the Common Core State Standards for Mathematics 
(CCSSO & NGA, 2010), but are similar for many states that have adopted college and career readiness 
standards. While Tables 2a and 2b show how geometry standards progress across the grade levels in 
the standards, it is important to consider that geometry is also connected to many other mathematical 
content domains, and this learning trajectory is a combination of developmental progression and an 
instructional sequence (as described in Clements & Sarama, 2004) . Mathematics standards are not 
isolated concepts – they are connected to each other both within and across grade levels. It is crucial 
for educators to understand these connections so they can link to students’ prior knowledge while 
building a strong foundation for the connections that are still to come (Achieve the Core, n.d.). 

Researchers have found that while students in the U.S. are given plenty of exposure to 
geometry, there is a lack of exposure to deep geometrical thinking, and that many teachers need further 
development to effectively teach it with depth (Clements, 2003; Driscoll, 2007; Steele, 2013). In fact, 
this is true among all mathematics domains where a majority of mathematics teachers report that 
instructional materials given to them provide opportunities to teach major topics addressed by state 
standards. However, a significantly lower percentage of teachers indicated that their materials 
addressed these topics with equal time, rigor, and intensity (Opfer et al., 2016). Looking at both what 
and how geometry is taught, it becomes evident that most U.S. geometry curricula tends to be scattered 
and while various topics are taught, much is explored at the surface level and does not support higher 
levels of geometric thinking (Clements & Battista, 1992; Senk, 1989; Sinclair & Bruce, 2015). This lack 
of instruction and exposure to deep geometrical thinking is also evidenced by U.S. students’ 
performance on the international level, as evidenced by the TIMSS 2007, 2011, 2015, and 2019 data, 
which show that geometry has historically been the content domain with the lowest performance, and 
this is true across all tested grade levels (4th grade, 8th grade, end of high school) (Mullis et al., 2020).  
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Table 2a 
 
Common Core State Standards - Geometry Standards (K-8) 
 

Grade Main Ideas 

K - Identify and describe shapes 
- Analyze, compare, create, and compose shapes 

1 - Reason with shapes and their attributes 

2 - Reason with shapes and their attributes 

3 - Reason with shapes and their attributes 

4 - Draw and identify lines and angles, and classify shapes by properties of their lines and angles 

5 - Graph points on the coordinate plane to solve real-world and mathematical problems 
- Classify two-dimensional figures into categories based on their properties 

6 - Solve real-world and mathematical problems involving area, surface area, and volume 

7 - Draw, construct, and describe geometrical figures and describe the relationships between them 
- Solve real-life and mathematical problems involving measurement, area, surface area, and volume 

8 - Understand congruence and similarity using physical models, transparencies, or geometry software 
- Understand and apply the Pythagorean theorem 
- Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres 

Adapted from CCSSO and NGA (2010) 

 
 
Table 2b 
 
Common Core State Standards - Geometry Standards (High School) 
 
Grade Categories within Geometry Main Ideas 

High 
School 

Congruence - Experiment with transformations in the plane 
- Understand congruence in terms of rigid motions 
- Prove geometric theorems 
- Make geometric constructions 

Similarity, Right Triangles, and 
Trigonometry 

- Understand similarity in terms of similarity transformations 
- Prove theorems involving similarity 
- Define trigonometric ratios and solve problems involving right triangles 
- Apply trigonometry to general triangles 

Circles - Understand and apply theorems about circles 
- Find arc length and areas of sectors of circles 

Expressing Geometric 
Properties with Equations 

- Translate between the geometric description and the equation for a conic section 
- Use coordinates to prove simple geometric theorems algebraically 

Geometric Measurement and 
Dimension 

- Explain volume formulas and use them to solve problems 
- Visualize relationships between two-dimensional and three-dimensional objects 

Modeling with Geometry - Apply geometric concepts in modeling situations 

Adapted from CCSSO and NGA (2010) 
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The Role of Representations in Geometry 
 
Bossé and Adu-Gyamfi (2011) describe six modalities of student learning in geometry – 

communication, collaboration, reading and writing, real-world examples, multiple representations, and 
technology. This section addresses research question three in describing the role of multiple 
mathematical representations in geometry instruction. NCTM (2000) recommends providing students 
opportunities to select, apply, and transfer among mathematical representations to solve problems. 
NCTM (2014) describes that one facet of effective teaching is to engage students in making 
connections among mathematical representations to deepen their mathematical understanding. All 
students arrive to class with prior formal and informal mathematical experiences, and using multiple 
mathematical representations allows students to draw on multiple sources of knowledge (Boston et 
al., 2017). By selecting tasks which allow for students to use multiple mathematical representations, 
teachers can value and encourage students to draw on their mathematical, social and cultural 
competence, thereby positioning students as being mathematically competent (Boston et al., 2017; 
Smith et al., 2017). 

Lesh and colleagues (1987) proposed five different types of mathematical representations (i.e. 
visual, symbolic, verbal, contextual, and physical) which are relevant across mathematical content 
domains and the importance of making connections between them to deepen students’ mathematical 
understanding. “[Students] will need to be able to convert flexibly among these representations. Much 
of the power of mathematics comes from being able to view and operate on objects from different 
perspectives” (NCTM, 2000, p. 361). In 2015, Huinker suggested a consideration to Lesh and 
colleagues (1987) mathematical representations classification by suggesting that there are two 
important types of translations that need to be developed: (a) translations between these different modes 
of representations such as translations from a visual model to an equation (adapted from Lesh et al., 
1987; NCTM, 2014); and (b) translations within a specific mode of representation such as from one 
visual model to another visual model (e.g. comparing an array and an area model). While research 
supports the usefulness of representations and the rich mathematical perspectives that representations 
provide, transferring between and within representations can be challenging for both teachers and 
students alike. Teachers must be deliberate in creating experiences where students are given the 
opportunity to make sense of mathematical relationships using multiple mathematical representations 
(Boston et al., 2017). As students are expected to be flexible translating between and within 
mathematical representations, it is important for teachers to emphasize this as a part of their daily 
instruction, in turn influencing students’ knowledge and ability to use various representations fluently.  

In order to understand the role of mathematical representations that are present throughout 
the geometry curriculum it is first important to understand the progression of the main ideas in 
geometry (Figure 1) as shown in the Essential Understanding Geometry series (Dougherty et al., 2014; 
Goldenberg et al., 2014; Sinclair et al., 2012a, 2012b). Table 3 delves deeper into the big ideas in 
geometry at the K-2, 3-5, 6-8, and 9-12 level. These big ideas connect to the Common Core State 
Standards (CCSSO & NGA, 2010) described previously in Table 2a and 2b, and are further examined 
from a representational standpoint in the grade band subsections that follow. 
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Figure 1 
 
Progression of Main Ideas in Geometry Based on Work of Dougherty et al., (2014); Goldenberg et al., (2014); 
Sinclair et al., (2012a), (2012b) 
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Table 3 
 
Big Ideas in Geometry 
 
Grade Band Big Ideas 

K-2 1: Classification scheme specifies for a space or the objects within it the properties that are 
relevant to particular goals and intentions. 
2: Geometry allows us to structure spaces and specify locations within them. 
3: We gain insight and understanding of spaces and the objects within them by noting what does 
and does not change as we transform these spaces and objects in various ways. 
4: One way to analyze and describe geometric objects, relationships among them, or the spaces 
that they occupy is to quantify – measure or count – one or more of their attributes. 

3-5 1: Transforming objects and the space that they occupy in various ways while noting what does 
and does not change provides insight into and understanding the objects and space. 
2: One way to analyze and describe geometric objects, relationships among them, or the space 
that they occupy is to quantify – measure or count – one or more of their attributes. 
3: A classification scheme specifies the properties of objects that are relevant to particular goals 
and intentions. 

6-8 1: Behind every measurement formula lies a geometric result. 
2: Geometric thinking involves developing, attending to, and learning how to work with imagery. 
3: A geometric object is a mental object that, when constructed, carries with it traces of the tool 
or tools by which it was constructed. 
4: Classifying, naming, defining, posing, conjecturing, and justifying are codependent activities in 
geometric investigation. 

9-12 1: Working with diagrams is central to geometric thinking. 
2: Geometry is about working with variance and invariance, despite appearing to be about 
theorems. 
3: Working with and on definitions is central to geometry. 
4: A written proof is the endpoint of the process of proving. 

Compiled from Dougherty et al., (2014); Goldenberg et al., (2014); Sinclair et al., (2012a), (2012b) 

 
Early Childhood and Elementary Geometry Experiences 

 
From early childhood, the domains of geometry and spatial reasoning are an important area 

of mathematics learning. Geometry, just as with other areas of mathematics, is an extension of what 
we do naturally (Goldenberg et al., 2014). Without yet formalizing it, young children are able to 
understand the distance between themselves and their toys, change location and orientation, and can 
grasp edges and crawl and run around shapes. In a study involving pre-school participants, Villarroel 
and Ortega (2017) found that children naturally use geometric shapes in their art even before they 
have any formal experiences. These early understandings of geometry are supported in the literature 
(Dougherty et al., 2014; Goldenberg et al., 2014; Sinclair et al. 2012a, 2012b) which indicate that 
locating and visualizing are students’ first introduction to geometry. All these initial exposures to 
geometric representations engage students in informal reasoning, which support and build a 
foundation for informal and formal reasoning in K-12 mathematics, and serve as a core in relating 
other subject areas to mathematics (Clements & Sarama, 2011). 

Once students formally start school, students in grades K-2 start to spend time exploring 
geometry within the context of their own environments and then learn to start engaging in formal 
activities by identifying and describing the shapes they see and touch (Dixon et al., 2016). In grades 3-
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5, students build a foundation of geometric ideas such as dividing shapes into equal pieces which 
connects to ideas even in high school, such as to trigonometric ratios such as sine, cosine, and tangent 
(Dixon et al., 2016). By initially forming connections between the visual, physical, and contextual 
representations, students are then able to develop formal language to describe the shapes. This 
progression of geometric understanding that students develop at the K-5 level is important to 
students’ overall mathematical learning. 

A study by Cai and Lester (2005) in U.S. and Chinese elementary schools found that the types 
of representations that students use heavily relies on the representations used by their teachers, thereby 
emphasizing the importance of using multiple mathematical representations during instruction. 
During a task implementation, Bay-Williams and Fletcher (2017) established that modifying the 
hundred charts to create an alternative bottom up representation better aligned the concrete and 
physical manipulatives with the language connected to children’s geometrical thinking. Such 
representations allow for connections to representations that students are exposed to at the K-2 level 
and beyond, such as physically stacking objects, counting using number lines, and extending to 
graphing on a coordinate axis. The use of such representations is also supported by Huinker and Bill 
(2017) who suggest that in these grade levels, visual and physical representations are particularly 
important as students continue to develop their algebraic reasoning and spatial thinking.  

Yu et al. (2009) discuss the idea of prototype and categorical thinking by describing an 
experiment where students are given visuals of three different rectangles, a vertical, long, and narrow 
one; a horizontal stout one, and a square. When asked to pick a rectangle, most students pick the 
horizontal one, as that is the one typically shown in geometry textbooks. This is also seen with 
students’ understanding of other shapes, where a change in orientation often causes much confusion. 
Children develop their spatial reasoning through both play and focused mathematics instruction, and 
children’s spatial skills strongly correlate to and predict future mathematics performance. As such, this 
is “an area that that demands greater attention in early childhood and elementary mathematics” 
(NCTM, 2020a, p. 117). These early experiences of translating between and within these 
representations are important for students’ later understandings of geometric ideas taught at the 
secondary level which will now be discussed. 
 
Middle and Secondary Geometry Experiences  
 

A central goal of grade 6-8 geometry is to support students in developing a way to talk about 
properties of shapes, which is consistent with van Hiele’s level 3 (Smith et al., 2017). Middle school 
geometry focuses on examining angles, transformations, congruency and similarity, and the 
Pythagorean theorem (as described in Nolan et al., 2016). As students transition from elementary to 
middle school, visual and physical representations should not fade away, but rather need to be 
developed alongside symbolic representations (Tripathi, 2008). The visual context of a geometry 
problem plays an integral role in the discovery of number patterns and algebraic expressions, and 
through the pattern recognition and counting skills developed at the elementary level, and the use of 
concrete manipulatives, students in middle school can move towards discovering basic geometric 
formulas (Beigie, 2011). While a focus of middle school geometry instruction is developing formulas, 
such as those for surface area and volume, these algebraic manipulations naturally lend themselves to 
connecting the concrete three-dimensional representation. It is important for students to cultivate this 
conceptual understanding so they can leverage these connections between and within representations 
and move beyond memorization and rote application (NCTM, 2020b). 

High school geometry is often the first opportunity for a formal exploration of inductive and 
deductive reasoning and proofs. Additionally, high school geometry focuses on making sense of space 
and visualization as with using transformations, and determining relationships among measurements 
such as length, area, and volume. The four primary focuses of high school geometry include 
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measurement; transformations; geometric arguments, reasoning, and proof; and solving applied 
problems and modeling in geometry (NCTM, 2018). “Geometry provides a bridge between many 
topics in mathematics. It connects functions to their representations, proportions to similar triangles, 
and triangles to trigonometry” (Nolan et al., 2016, p. 57). Even with these explicit algebraic 
connections, teachers need to make intentional efforts to connect the symbolic and algebraic to the 
physical and visual representations that are often brought forward through integrating geometric 
connections. For example, tasks that allow students to visualize two-and three-dimensional shapes 
and solids in multiple ways can support conceptual understanding of geometric concepts such as area, 
surface area, and volume (Ben-Haim et al., 1985; Ferrer et al., 2001) and can enable students to develop 
further and deeper meaning for these constructs (Smith et al., 2017). Safi and Desai (2017) suggest 
that teachers can use two- and three-dimensional manipulatives to emphasize connections between 
algebraic instances—such as multiplying polynomials—with the geometric representations related to 
the area accounted for through the product of algebraic expressions. Geometric and algebraic 
understandings and representations reinforce each other, and for students to gain a rich perspective, 
it is necessary to expose students to both. 

In recent years, teachers and students have potentially greater access to new forms of dynamic 
representations, including open source and freely available dynamic geometry software, virtual 
manipulatives, and other apps that enable them to manipulate visualizations which was once not 
possible with the static paper-pencil methods (Hollebrands & Dove, 2011; Jackiw, 2001).  As described 
by Battista’s (2009) framework, briefly described in Table 1, such representations allow students to 
connect conceptual knowledge to dynamic pictorial representations, thereby providing rich 
opportunities for understanding and connecting geometric representations. Hollebrands (2003) 
recommends that teachers use dynamic geometry software to support students in gaining deeper 
understanding of transformational geometry concepts and the connections between transformations 
and functions. Dynamic software applications introduce students to mathematics that would have 
otherwise been out of reach and help students transfer metal images of concepts to visual interactive 
representations that can lead to more robust understanding (Dick & Hollebrands, 2011). Much of 
secondary mathematics focuses on formal and rigorous mathematical reasoning, and oftentimes there 
is a greater emphasis on algebraic or symbolic manipulation and logical deductions (Battista, 2017). 
While this emphasis is indeed necessary, it is equally important for students to be given experiences 
with other forms of representations (both static and dynamic) to build their initial conceptions of the 
topic. Such explorations allow for connecting multiple mathematical representations while providing 
affordances from each representation that can be leveraged in future mathematical explorations. 
 

Concluding Remarks 
 

This literature review synthesizes, organizes, and elaborates on existing literature relating to 
the teaching and learning of geometry at the PK-12 level in the U.S. and the role that mathematical 
representations can play in enriching the geometry experience for our students. Through this synthesis, 
it is evident that representations play a crucial role in the teaching and learning of geometry. By 
providing students access to opportunities to explore multiple mathematical representations, they are 
no longer limited by the strengths and weaknesses of one particular representation (Elia et al., 2007), 
and they are able to deepen their mathematical understanding while engaging in meaningful 
mathematical discourse (Lesh et al., 1987; NCTM, 2014). Yet, as NCTM (2020b) discusses, at the early 
childhood and elementary level “Geometry instruction, typically, does not move beyond shape names 
or definitions, only engaging in low-level thinking” (p. 119). As evidenced within the geometry 
curriculum, this is similar at the secondary level where algebraic and symbolic representations are 
greatly overemphasized (Knuth, 2000). As a result, students often experience a disconnect in 
transferring between and with representations because some representations, especially symbolic and 
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visual, are included as end products rather than as starting points in reasoning and problem solving. 
“Children enter this world as emergent mathematicians, naturally curious, and trying to make sense of 
their mathematical environment” (NCTM, 2020a, p. 17). For our students to continue to see 
themselves as capable learners and doers of mathematics and experience the wonder, joy, and beauty 
of doing mathematics, it is important that PK-12 instruction provides them opportunities to see 
connections between mathematics and their daily lives (NCTM 2018, 2020a, 2020b).   

Giving students such opportunities to engage in tasks that allow the use of multiple 
mathematical representations empowers teachers to create more equitable tasks as they afford a wider 
range of access to mathematical ideas (Boston et al., 2017). However, the use of multiple mathematical 
representations is often placed into the curriculum as an afterthought to help students who may be 
struggling to firmly understand the content. Van de Walle, Karp, and Bay-Williams (2019) describe 
understanding as existing along a continuum from instrumental to relational understanding, terms that 
were first introduced by Richard Skemp in 1976. While students may perform well academically in the 
moment, as teachers it is important to think about and through whether students are just remembering 
or whether they are thinking about the mathematics. Clements (2003) supports the idea that all 
students need to play with concrete objects and see visual representations before they are able to 
understand abstract topics. Students get little meaningful mathematics out of the traditional proof-
based approach that is often used in the high school geometry curriculum. Some students may be able 
to remember and give an output in the given amount of time, but “if we look at the mathematics in 
the world and the mathematics used by mathematicians, we see a creative, visual, connected and living 
subject” (Boaler, 2016, p. 31). Geometry naturally lends itself to noticing and wondering about the 
world around us and provides an ideal platform to make these representational connections a reality. 
Consistent PK-12 geometrical learning experiences through high quality tasks rightfully affords 
students intentional opportunities to translate between and within multiple mathematical 
representations, empowering students to experience this wonder, joy, and beauty in mathematics 
(NCTM 2018, 2020a, 2020b). In this manner, students’ experiences can be fueled by discovering 
connections between and within mathematical representations, while linking mathematical domains 
enriched by the wonders of geometry in our lives, communities, and cultures.   
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ABSTRACT 
 
Students who develop interest in STEM careers by the eighth grade are more likely to pursue careers 
in STEM (Tai et al., 2006). Interest development can happen through a variety of sources, including 
informal learning experiences such as out of school programs and summer camps. This study looks 
at one such informal STEM experience, an engineering summer camp for elementary students, to 
explore how this camp impacted their understanding, awareness, and attitudes toward engineering. 
The study used a pre/post design to determine the impact of the camp with two groups of students 
in two separate years. The results suggest that students gained an awareness of the types of 
engineering, a better understanding of the purpose of the work of engineers, and had more positive 
attitudes about the value of engineering and their own aspirations toward engineering. 
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Introduction 
 

There is a growing need to develop a workforce that is capable of meeting the needs of a 
changing society. The World Economic Forum (2017) recently published a report indicating that the 
workforce of the future will be heavily dependent on technology and engineering. The number of 
science, technology, engineering, and mathematics (STEM) jobs in the United States is projected to 
grow at a rate 4.6% higher than non-STEM jobs between 2019 and 2029 (U.S. Bureau of Labor 
Statistics, 2020). While the number of STEM graduates in the U.S. is steadily rising, a growing number 
of those graduates do not remain in the U.S. workforce, instead returning to home countries such as 
China and India (National Science Board, 2018). This points to a need for more US students to 
graduate from STEM programs to meet the job demand, which will require attracting students to 
STEM majors prior to entering college. A growing body of research indicates that early experiences 
in and out of school are effective at developing STEM interest, which in turn influences students’ 
choices to pursue STEM careers (Maltese et al., 2014; Maltese & Tai, 2011; Sadler et al., 2012).  

Interest develops at all ages; however, students are more likely to pursue a STEM degree if 
they develop some interest in a STEM career prior to middle school (Tai et al., 2006). This interest 
can develop through a variety of sources. Many people who pursue a STEM degree attribute their 
interest to early life experiences with a family member or friend who is an engineer or scientist, 
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opportunities to tinker with devices or play outside, or a natural interest in the subjects (Maltese et al., 
2014). Learning experiences in elementary school can also play a vital role in developing interest and 
understanding of the field of engineering (Burt & Johnson, 2018). Thus, students, particularly those 
who do not have family or community support for STEM, need opportunities to experience 
engineering in order to gain exposure and understanding of what it entails. Formal learning 
experiences in the school are the most logical setting to gain this exposure, but this is not always 
possible. Many elementary school teachers lack the confidence to appropriately teach science and 
engineering in the classroom, causing them to leave these subjects out of instruction or to insert 
ineffective activities into the curriculum (Appleton, 2013; Yoon et al., 2011). Consequently, informal 
learning experiences can offer students learning opportunities that may be limited in formal K-12 
settings. 

Even though we know STEM interest develops early, the research on this development among 
elementary students is limited. Much of the current research on early learners focuses on conceptions 
of an engineer (Pekmez, 2018; Newley et al., 2017; Capobianco et al., 2011; Karatas, Micklos, & 
Bodner, 2011) or identity (Capobianco et al., 2012; Capobianco et al., 2017). While these are important 
factors that play a role in students’ future career decisions, they do not paint the whole picture. This 
is particularly true when students do not have accurate representations of engineering careers which 
could limit their ability to see their possible selves (Markus & Nurius, 1986) in those future roles. This 
study attempts to address this gap in the literature by focusing on understanding of engineering 
alongside career awareness and interests of upper elementary students. 

This study examines an engineering summer camp for elementary students. The goals of the 
camp were to provide engineering experiences for students in grades 4-6, teach them about the process 
of engineering design, and expose them to a variety of engineering fields and career options. We 
pursued each of these goals to provide students with experiences that might enhance their ability to 
envision engineering as a future possible career path. The purpose of the study was to explore how 
this camp impacted elementary students’ understanding, awareness, and attitudes toward engineering. 
The study addressed the following research questions: 

 
1. How did the engineering camp affect student understanding of the work of engineers 

and awareness of engineering careers? 
2. How did the engineering camp affect students’ attitudes toward engineering? 

 
Background Literature 

 
To guide our study related to students’ interest in and awareness of engineering careers, we 

reviewed literature on career interest development and attitudes toward engineering. Additionally, we 
explored research focused on student understanding of engineering and in particular their 
understanding of the work of engineers.  
 
Interest Development and Career Awareness 
 
 The development of interest in engineering and engineering careers is a critical aspect of 
students’ choice to pursue those careers. The development of this interest can happen in a variety of 
ways. Positive learning experiences both in and out of school, and students’ beliefs and attitudes about 
engineering play an important role in this development (Banerjee et al., 2018; Burt & Johnson, 2018; 
Dou et al., 2019; Lent et al., 1994; Maltese & Tai, 2011). Several studies have pointed out that STEM 
interest development happens most often prior to middle school (Maltese et al., 2014; Tai et al., 2006; 
Wyss et al., 2012). A critical age for the development of these interests occurs in middle childhood, 
particularly in upper elementary school where children begin to think of their interests and capabilities 
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as becoming solidified (Todt & Schreiber, 1998). Students also need guidance to understand that 
achievement and success are not strictly innate, as well as assistance with developing a growth mindset 
(Harter, 2006).  
 The development of interest in engineering and engineering careers can be increased through 
a variety of mechanisms. One study examined the influence of a design and build workshop with 
students in upper elementary and middle school. The results indicated that the experience had a 
positive impact on students’ attitudes toward engineering, views that engineers are problem solvers 
and impact the world, and familiarity with engineering. Additionally, students’ self-efficacy and interest 
in STEM increased after the intervention (Innes et al., 2012). Sullivan and Bers (2019) studied the 
effects of a robotics program on the interests and attitudes of early elementary students. They found 
that boys had a higher initial interest in engineering than girls, but after the intervention, girls’ interest 
rose significantly. These authors also noted that the teachers for the robotics program were all female, 
perhaps providing positive examples for the girls in the study. Ozugul et al. (2017) examined the 
engineering knowledge and interest of students in grades K-5, finding that understanding of and 
interest in engineering were not significantly different between males and females, but Caucasian 
students had significantly higher knowledge and interest levels than Latino/a students. The disparity 
between ethnic groups can arise when students from one group have limited access to opportunities 
that promote STEM. These authors suggested that in order to decrease this disparity, engineering 
interventions should begin in early elementary school. Furthermore, they suggest these interventions 
should continue through upper elementary school to avoid the split in knowledge and interests in 
genders that commonly occurs as students progress through secondary schools.  

Studies of elementary students in engineering camps are lacking, supporting the need for this 
study. However, there are several studies that indicate positive effects of engineering camps on interest 
and understanding of engineering for middle and high school students. Mohr-Schroeder et al. (2014) 
ran a one-week camp for middle school students that provided students with a variety of hands-on 
engineering and science experiences led by college faculty and local teachers. They found that their 
camp was engaging to participants and reported a positive change in career interest between a pretest 
and posttest. Yilmaz, et al. (2010) found that their camp for high school students improved 
engineering career interest through an interdisciplinary approach using a variety of hands-on 
engineering projects. These projects involved real-world scenarios and challenges where students 
worked in teams to complete the challenges over the course of the week-long camp. Furthermore, 
Kong, et al. (2013) surveyed over 1,500 middle school students from eight different schools and found 
that when controlling for initial interest, those who had participated in a science- or engineering-based 
camp were more likely to want to pursue an engineering career.  
 
Understanding of Engineering 
 
 Engineering is a field that involves the design and support of systems and objects that make 
the world more efficient and productive (Trevelyan & Williams, 2019). Engineering affects every area 
of life and has a major impact on people of all ages. However, when asked to describe the work of an 
engineer, many elementary students have misconceptions or lack understanding of engineering 
altogether. Typical responses from students depict engineers as mechanics, fixers, or laborers, without 
acknowledging the role of design in the work of an engineer (Capobianco et al., 2017; Capobianco et 
al., 2011; Gibbons et al., 2004; Newley et al., 2017; Reeping & Reid, 2014). One reason for these 
misconceptions about the work of engineers is that many elementary teachers feel unprepared to teach 
engineering and often do not present these experiences regularly (Banilower et al., 2013), in spite of 
integration of engineering practices into the Next Generation Science Standards (NGSS Lead States, 2013) 
and many states’ standards (Lopez & Goodridge, 2018). Therefore, the primary source of information 
about engineering is developed from portrayal in media or connections with engineers who are friends 
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or family (Bevins et al., 2005; Chou & Chen, 2017; Jacobs & Scanlon, 2002). One of the issues this 
presents is that many students do not have any personal connections to engineers and are therefore 
only exposed to limited, and often inaccurate, examples of engineers. Rao and Dewoolkar (2021) 
examined the portrayal of engineers in the news media and found that engineers were rarely mentioned 
and news stories missed out on opportunities to describe engineers as experts capable of helping solve 
key problems. Ellestad (2013) studied popular media, finding that engineers are often portrayed as 
socially awkward, white males, and with exaggerated and farcical characteristics. The study found that 
the media furthered people’s stereotypical images of engineers, even when personal experiences with 
engineers countered these images.  
 Understanding student conceptions of the work of an engineer is not always easy to do. One 
common method is the use of drawings to gain insight into students’ perceptions of the work of an 
engineer. Capobianco, et al. (2011) conducted a study in which they collected data from nearly 400 
elementary students in various types of schools in the Midwest. The authors demonstrated that these 
students often depicted engineers as mechanics, laborers, and technicians. They also found that more 
than half of the drawings portrayed engineers as men. Middle school students have also been found 
to share conceptions of engineers as predominantly males who are portrayed as makers (Fralick et al., 
2009; Hammack & High, 2014; Karatas et al., 2011).  
 Interventions have had some success in developing an understanding of the work of engineers 
in students. Farland-Smith and Tiarani (2016) looked at two groups of eighth grade students, one in a 
traditional science classroom setting and another in which the teachers brought in engineers from the 
community and focused on engineering careers and the integration of STEM subjects. While both 
cohorts had similar misconceptions initially, the integrated STEM cohort developed a more 
comprehensive understanding of the work of an engineer and how an engineer uses science. Hammack 
et al. (2015) studied the effect of an engineering-focused summer camp on the understanding of 
engineering, determining that participants gained a better grasp of engineers as being involved in the 
design and development of products. Similarly, Hammack and High (2014) examined the impacts of 
an afterschool engineering mentoring program for middle school girls and found that prior to 
participation, students viewed engineers as people who build and fix things. After participating in the 
program, the girls were more likely to portray engineers as creative problems solvers. 
 
Attitudes Toward Engineering 
 
 Elementary school students’ attitudes toward engineering vary based on a variety of factors, 
though there is some indication that attitudes are less positive in elementary school and more positive 
in secondary schools (Kőycű & de Vries, 2016). Additionally, there are studies that indicate differences 
over whether males or females have more positive attitudes toward engineering in elementary school 
(Lachapelle & Cunningham, 2019; Lie et al., 2019). However, studies tend to support the notion that 
interventions focused on engineering education improve student attitudes toward engineering. Baran, 
et al. (2016) looked at an elective weekend out-of-school STEM program for middle school students. 
While students generally had positive attitudes starting the camp due to its voluntary nature, the 
program still made significant improvement to attitudes, particularly in regard to personal and social 
implications for engineering, use of science in engineering, and daily-life connections for STEM 
subjects. Another study, by Teeter, et al. (2020), examined an engineering-focused exhibition for high 
school students. They suggested that outreach events such as these, which focus on developing interest 
and engagement, improved attitudes toward engineering in conjunction with the development of 
identity toward engineering. 
 Student exposure to engineering in the classroom and informal experiences can help them to 
identify more closely with engineers. Kelly, et al. (2017) describe this development as a progression, 
from simply seeing a person acting in the role of an engineer, to actually doing the work of an engineer 
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themselves. A study by Douglas, et al. (2014) examined students in grade 2-4 classes with teachers 
who had taken professional development in engineering education. The teachers implemented 
engineering lessons in their classes throughout the school year. Researchers found that students 
identified themselves as engineers more after the intervention than they had before. Another study of 
middle school students reported that integration of engineering into the curriculum increased students’ 
identity as engineers (Yoon Yoon et al., 2014). 
 

Theoretical Framework 
 

The possible selves framework guided our work on this study. Possible selves are the ideas 
individuals possess about what they might become (Markus & Nurius, 1986).  These possible selves 
include visions of who they would like to become as well as who they fear they might become. Possible 
selves are separate yet connected to current and past selves and are distinctly social. Perceived possible 
selves can be the direct result of how individuals compare themselves with the characteristics and 
behaviors they have witnessed of others. “What others are now, I can become” (Markus & Nurius, 
1986, p. 954). While individuals might have multiple possible selves, the possible selves they create are 
derived from their personal experiences and exposure to different models, images, and symbols.  
 For children, career related possible selves can be ideas about what is possible for their future. 
These ideas of possible careers can then guide their behavior to help them achieve a desired outcome. 
Children may perceive certain possible selves to be more achievable than others based, in part, on 
exposure to the career and availability of role models (Oyserman et al., 1995). It is only when a hoped-
for self seems possible that a child attaches certain actions to that self and can envision a path toward 
achieving that possible self (Oyserman & Markus, 1990). This means having limited exposure to 
accurate representations of different careers, such as engineering, can limit a child from developing 
the possible self of engineer. As such, one of our primary goals when designing the camp experiences 
for children was to provide them with experiences that connected the camp activities they completed 
with the work of real engineers. By providing campers with opportunities to learn about the work of 
engineers from the engineers themselves, we hoped to provide them with opportunities to envision a 
possible self where they could become an engineer. 
 

Methods 
  
 The possible selves framework (Markus & Nurius, 1986) guided the design of the study 
intervention and our interpretation of the findings. Researchers sought to evaluate the effectiveness 
of the engineering summer camp intervention for elementary students by using a one-group pretest-
posttest design (Strunk & Mwavita, 2020).  Prior to any data collection, IRB approval was gained for 
this evaluation project.  Thus, for each participant, researchers gained student informed consent and 
parent consent prior to participant data being included in this study.   

This study utilized a purposeful sampling strategy that required the researchers to establish 
criteria for the sample prior to data collection (Hays & Singh, 2012).  Further, Miles and Huberman 
(1994) suggest that there are a variety of purposeful sampling strategies. Based on the literature 
suggesting that middle childhood is a critical time for interest development, we purposefully recruited 
middle childhood participants for our camp. Through the selection of all participants in the summer 
engineering camp across two years of the camp, a comprehensive sampling method provided the most 
representative sample.    
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Participants 
  
Camp participants (n = 49) came from two summer camps held in consecutive years that were 
organized by the study authors and included elementary students who were going into grades 4-6 the 
next academic year. Only 44 camp participants were included in data analysis as five were lacking either 
a complete data set or parental consent to be included in the study. Table 1 provides an overview of 
the study participants’ demographics by camp year. The students were between the ages of nine and 
12 with about two-thirds being male. In terms of race, 55% were white and 25% identified as American 
Indian or Alaska Native. The remaining students identified as Asian, Hispanic or preferred not to 
respond. One student was present for camp in both summers, and no other student had participated 
in this camp before. 
 
Table 1 
 
Demographics of Camp Participants 
 
           Year 1a 

           n (%) 
  Year 2b 

   n (%) 

Gender   
Male        16 (70%)     14 (67%) 
Female          7 (30%)   7 (33%) 

Race/Ethnicity   
White        10 (43%) 13 (62%) 
American Indian/Native Alaskan          8 (35%)   3 (14%) 
Asian          2 (9%)   4 (19%) 
Hispanic/Latinx          1 (4%)   0 (0%) 
No response          2 (9%)   1 (5%) 

aYear 1: n = 23 
bYear 2: n = 21 
 
Instructional Context 
 
 The camps were five days in length and held on a large university campus in a Midwestern 
state, where local elementary students were invited to participate in learning about engineering design. 
Each day of the camp ran for 3.5 hours, with snacks and a break provided in the middle of each day. 
The camp has been operating at this university since 2016 and is facilitated by faculty and graduate 
students in the mathematics and science education program. The goals of the engineering camp were 
to (1) introduce students in grades 4-6 to the engineering design process and how it can be used in the 
context of solving a problem, (2) help students develop an understanding of the work of an engineer, 
and (3) increase engineering career awareness by presenting a variety of engineering fields and careers 
associated with those fields.  
 On the first day of camp, the students were divided into teams of 3-4, introduced to the camp 
staff, and completed pretests. The camp director then provided an overview of engineering design 
and how the campers would use it throughout the week. The remainder of the week was spent 
completing engineering design tasks, touring engineering facilities on campus, learning about 
engineering careers, and talking with engineering faculty about their various fields of study. Camp 
instructors used a variety of strategies to ensure all learners were actively engaged and able to access 
the material, including but not limited to, small group work, hands-on modeling of abstract concepts, 
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using probing questions to elicit student thinking and facilitate meaning making, and exposure to 
gender and ethnically diverse professional engineers. At the end of the week, campers completed 
posttests and the campers’ families were invited to come to a showcase event, where the projects from 
the week were displayed and campers shared their experiences at the camp with invited guests. Table 
2 provides an overview of each day’s schedule.  
 
Table 2 
 
Camp Schedule Overview 
 
Day 1 

• Pretests 
 

• Introduction to 
engineering design 

 
• Design challenge 

 
• Exit ticket 

 
• Take-home 

challenge 

Days 2-4 
• Engineering career highlight 

activity 
 

• Design challenge 
 

• Guest speaker or facility tour 
 

• Design challenge 
 

• Exit ticket 
 

• Take-home challenge 

Day 5 
• Engineering career 

highlight activity 
 

• Design challenge 
 

• Posttests 
 

• Family showcase 

  
 The possible selves that children view as achievable are influenced by their personal exposure 
to careers and role models. With this in mind, we structured each day to highlight specific engineering 
fields and careers through in-person visits from engineering faculty and videos that showcased 
engineers at work. Camp staff solicited engineering faculty volunteers who were both interested in 
speaking with elementary students and whose schedules allowed them to visit camp in person. This 
allowed campers to see, hear, and pose questions to both male and female engineers in fields such as 
mechanical, aerospace, chemical, civil, architectural, biomedical, environmental, agricultural, and 
electrical engineering. The design challenges for the camp were selected with several criteria in mind. 
First, the developmental appropriateness of the lesson was considered to ensure elementary friendly 
activities were chosen. Second, chosen activities represented good principles of engineering design as 
laid out in A Framework for K-12 Science Education (National Research Council, 2012). Many of these 
tasks were taken or adapted from sources such as TeachEngineering (http://teachengineering.org) 
and Engineering is Elementary® (Museum of Science Boston, 2003). Third, the types of design 
challenges were selected to align with the career fields of the visiting engineers. Different design 
challenges were used at each camp in order to keep the camp engaging for students who might attend 
multiple years. 
 
Measures 
 
 Researchers used several instruments to assess the impact of the camp on students’ 
understanding of the work of an engineer, potential engineering career paths, the engineering design 
process, and attitudes towards engineering. Details about each instrument are provided below. 
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What is Engineering? (WiE) 
 

This instrument, developed by Cunningham (2005), explores student conceptions about the 
work of an engineer. It was developed to allow researchers to gain insight into the depth of knowledge 
students have about engineering. This instrument consists of sixteen images and descriptors along 
with one free response question. Image descriptors include improve machines, construct buildings, 
arrange flowers, and read about inventions. Students are asked to identify the items that represent the 
work that engineers engage in, and then describe an engineer in words. The What is Engineering? 
instrument has been shown to have good internal consistency with a  Cronbach’s α of 0.881 (Cohen, 
1988). 
 
Engineering Design Process Questionnaire (EDPQ) 
 

The EDPQ instrument explores student understanding of the engineering design process and 
the work of an engineer. It includes three open-ended questions: (1) describe the work of an engineer, 
(2) list as many different types of engineers as you can and describe the jobs that each might have, and 
(3) describe the engineering design process. There is also a Likert-style question where students rate 
their understanding of the engineering design process, ranging from not knowing at all to 
understanding very well. For this study, only the first two questions were analyzed. This instrument 
was developed by the researchers for the purposes of the camp and to address the research questions 
for this study. To ensure that the questions were appropriate for upper elementary school students, 
the researchers determined their Flesch-Kinkade readability score, which indicated a 5th grade reading 
level. The camp instructor read questions aloud for those participants who required additional 
assistance.  
 
Engineering Interest and Attitudes (EIA) 
 

The EIA instrument was developed by Lachappelle and Brennan (2018) to determine the 
extent to which students develop interest in engineering and what their attitudes are toward 
engineering upon encountering engineering design. This instrument consists of a twenty-four item 
five-point Likert scale in which students rate their agreement to each item from strongly disagree to 
strongly agree. Items are grouped into subcategories to evaluate engineering attitudes among students 
according to the value to me, enjoyment, value to society, school engineering, aspirations, and gender 
bias. This study was looking at the effect of the camp on students’ understanding of the work of 
engineers, awareness of engineering careers, and attitudes toward engineering. Based on the research 
purpose and the nature of the intervention, the researchers chose to eliminate the subcategories for 
school engineering and gender bias. The instrument, as designed, asks for students to assess 
themselves in their past and in the present. The instrument was modified for this camp to record only 
their current attitudes and interests in the pretest and posttest. To validate the EIA, Lachappelle and 
Brenna (2018) established the validity of the instrument using both content validity via an expert panel 
and through both exploratory and confirmatory factor analysis.   
 
Data Collection and Analysis 
  

Camp facilitators gave each instrument as a pretest to the campers on the first day of camp, 
then retested them on the last day of camp. Each student completed a demographic questionnaire, 
followed by the WiE, the EIA, and the EDPQ. Quantitative data was transferred to SPSS for analysis. 
The first author scored the first two instruments for each student by indicating whether each item was 
correctly or incorrectly selected and found the total number of correct selections for each student. 
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The pre-post data did not meet the assumption of normality; therefore the data was analyzed using 
the Wilcoxon Signed-Ranks test. The EIA was divided into subscales by averaging each of the 
individual item responses that make up each subscale. These averages, which also did not meet the 
assumption of normality, were run using the Wilcoxon Signed-Ranks test.  
 The open-ended responses from the EDPQ and WiE instruments were transcribed into Excel 
and analyzed independently by the first two authors. Instead of establishing an a priori coding system 
prior to looking at the responses, the authors used the phrases given by the participants to establish 
the coding (Saldaña, 2015). The responses to the first question were read twice to look for keywords 
and responses that the participants used to describe the work of an engineer, such as improve, fix, and 
design. Researchers then developed codes from the key words and phrases, lumping those with the 
same meaning and context. The frequencies of these codes were then measured for both pre and 
posttest. Once complete, the researchers met to discuss their findings and compare notes. During this 
meeting, any discrepancies in the way the phrases were coded were discussed until a consensus was 
reached. Once the researchers agreed on the coding, they ensured that frequencies for each code 
matched for analysis. Researchers then looked at each participants’ pretest and posttest response to 
compare the two and search for meaningful changes in the responses. 

The engineering type questions were marked and labeled for each type of engineering that was 
identified by the student, classifying it first as accurate or inaccurate, then within a subcategory of the 
type of engineering. Accurate responses correctly identified engineering types, such as mechanical, 
civil, and chemical. Inaccurate responses included descriptions of actions like “repair cars” or jobs 
that are not engineers like “plumber”. The responses were counted and compared graphically, then 
analyzed using a Wilcoxon Signed-Ranks test.   
 

Results 
 
What is Engineering? Instrument 
 

Figure 1 displays the results of the WiE instrument, ordered from largest decrease to largest 
increase. The items “Design Ways to Clean Water” and “Work as a Team” had the largest increase, 
while “Improve Machines” and “Design Things” remained the most selected items on the posttest. 
Table 3 displays the results of the Wilcoxon Signed-ranks test, which indicated that student 
conceptions of engineering before camp (Mdn = 10) were not significantly different from their 
conceptions after camp (Mdn = 11), Z = -1.799, p = .072. After discussion between the authors about 
the reason for the lack of a significant increase in scores and an examination of the data, it was 
determined that many students selected the item stating that “engineers teach children” in the posttest. 
During both weeks of camp, engineers came to speak to the students about their discipline, and the 
authors found it likely that students associated this as part of the work of an engineer. This item was 
subsequently removed from the data set and the test was run again. Without the teaching item 
included, the test indicated a significant difference between the pretest (Mdn = 9) and posttest (Mdn 
= 10), Z = -2.324, p = .02. The effect size (r = .35) for this analysis was found to be small according 
to Cohen’s (1988) convention.  
 
Engineering Design Process Questionnaire 
 

The EDPQ instrument included a question that asked students to describe the work of an 
engineer, and the WiE instrument asked participants to complete the following prompt: “An engineer 
is a person who…”. These questions were very similar and were given within a few minutes of each 
other, but the responses were not always the same. For example, in the pretests participant 45 
described an engineer as a person who “solves problems”, but described the work of an engineer as 
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“fixing things (electronics, etc.)”. Additionally, in the posttests, participant 41 stated that an engineer 
“makes the world a better place”, but described the work of an engineer as “buildings, vehicles, 
chemical, farms, human body”. Overall, approximately 40% of the participants provided answers that 
were different on the two questions.   
 
Figure 1 
 
What is Engineering? Pretest/Posttest Responses 
 

 
Table 3 
 
What is Engineering? Pretest/Posttest Results 
 
 Pretest Posttest    
Subscale Min Max Mdn Min Max Mdn Z p r 
What is Engineering? 6 14 10 8 16 11 -1.799 .072 .27 

Modified What is 
Engineering? 6 13 9 7 15 10 -2.324 .020* .35 

*Indicates significance at p < .05 
 

The responses were compiled from both instruments, and the responses varied among the 
participants. The most common responses on the pretest indicated that engineers design (28 
instances), build (27 instances), and repair or fix (17 responses). Eleven participants left their response 
blank or stated that they did not know. All other responses were recorded 10 or fewer times. On the 
posttest, the top two responses remained prevalent, with design occurring 24 times and build occurring 
17 times. However, three categories increased by a large margin from pretest to posttest. “Problem 
solving in engineering” increased from 10 responses on the pretest to 23 on the posttest, making it 
the second most-used phrase. “Helping” increased from 3 to 16, and “improve” increased from 10 to 
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16. Furthermore, the number of responses from students that said they did not know dropped from 
11 on the pretest to 6 on the posttest. 

Examination of individual responses before and after the camp revealed few major differences 
for students, except for the addition of clarifying or purpose statements. For example, participant 13 
stated in the pretest that “engineers usually design and fix things”, while their posttest response stated 
that “engineers usually try to make society better by making new things and improving old things”. 
Participant 9 began with the idea that engineers “improve and plan and build stuff”, but after the camp 
stated that “they help improve our lives”. 

The second question on the EDPQ asked students to name as many types of engineers as they 
could. Figure 2 displays the results, which indicated that the number of correct responses increased 
from 30 to 133, the number of incorrect responses decreased from 26 to 4, and the number of students 
who did not respond decreased from 12 to 7. To ensure that the increase in number of correct 
responses was not due only to one or two students who were able to name a large number of engineers, 
the responses were analyzed for each student, and categorized into responses that gave zero correct 
responses, one to three correct responses, and four or more correct responses. The results, shown in 
Figure 3, indicate that the number of students naming zero engineers dropped from 27 to 6, the 
number naming one to three engineers remained the same, and the number naming four or more 
engineers increased from 1 to 21. 

Finally, researchers analyzed the change in total number of correct responses by running a 
Wilcoxon Signed-Rank test, which indicated a significant increase in number of engineers the students 
could name, Z = -5.040, p < .001, and revealed a medium effect size (r = .56) which indicates that the 
camp experience was effective at increasing students’ awareness of an existence of different 
engineering disciplines. 
 
Figure 2 
 
Total Number of Correct Types of Engineers in Participants’ Responses 
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Figure 3 
 
Number of Correct Responses Given by Individual Participants 
 

  
 
Engineering Interests and Attitudes Scale  
 

Table 4 presents the results of the Wilcoxon Signed-Rank test for each of the EIA subscales. 
The EIA instrument indicated that participants’ attitudes in each of the subscales either increased or 
remained the same, however only two categories were significantly different from pretest to posttest. 
The test provided this difference for the value of engineering to society (Z = -3.782, p < .001) and 
aspirations toward engineering (Z = -2.284, p < .022). The effect size for the value of engineering to 
society (r = .59) suggests a medium effect, and aspirations toward engineering (r = .36) suggests a 
small effect. The value of engineering to me subcategory, while not significant at p < .05, also revealed 
a small effect size (r = .30). According to the convention developed by Cohen (1988), these effect 
sizes suggest that the camp was somewhat effective at improving students’ attitudes toward 
engineering in these subcategories. However, caution should be used when interpreting the meaning 
of effect sizes because these general categories developed by Cohen may be interpreted differently 
according to the context in which they are used. 
 
Table 4 
 
Engineering Interests and Attitudes 
 
 Pretest Posttest    
Subscale Min Max Mdn Min Max Mdn Z p r 
Value of Engineering to Me 2.0 5.0 4.0 2.0 5.0 4.5 -1.919 .055 .30 

Value of Engineering to 
Society 2.6 5.0 3.8 1.0 5.0 4.8 -3.782 <.001** .59 

Enjoyment of Engineering 1.0 5.0 4.0 1.0 5.0 4.0 -1.287 .198 .20 

Aspirations Toward 
Engineering 1.0 5.0 3.9 1.0 5.0 4.5 -2.284 .022* .36 

*Indicates significance at p < .05 
**Indicates significance at p < .001 
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Discussion 
 
 The analysis of the WiE instrument suggested that camp participants initially believed that 
engineers engaged in tasks such as repairing cars and constructing buildings, which is in line with prior 
work on understanding of engineers (Capobianco et al., 2017; Capobianco et al., 2011; Newley et al., 
2017). After analysis, the results from the pretest to posttest were not significant. However, the 
removal of the item regarding teaching did make the test significant, and the effect size increased from 
r = .27 to r = .35. While this effect size is considered small according to Cohen’s convention, the 
growth in understanding of the work of an engineer is consistent with other engineering interventions 
(Farland-Smith & Tiarani, 2016; Hammack et al., 2015). However, seeing that one aspect of the camp 
so prominently affected the results of the posttest, we feel that it is necessary to consider the 
importance of the context of an intervention in determining the results. These results indicate that the 
way in which curriculum is presented can have a substantial impact on the way students view or 
understand a particular topic. Specific aspects of the curriculum that are either included or left out 
may play a meaningful role in participants developing an understanding of what engineers do, and 
should be an important consideration for the design of future experiences.  
 Another consideration to be made based on the results of this study is the need for multiple 
assessment methods in research. There were similar questions about the work of engineers on two 
separate instruments, and 40% of participants responded with different answers. While for some, 
these differing responses may represent the variety of concepts they have about engineers, it also 
demonstrates the fragility of these participants’ understanding of engineering. By using two measures, 
it was possible for the researchers to gain insight into the variety of ideas that participants had, while 
also seeing how their understanding lacked depth and stability. 
 Nevertheless, certain shifts in the responses did indicate that the context, message, and 
activities present in the camp had an impact on participants. The biggest increases in students’ 
responses to describing engineers and their work involved engineers helping, improving, and finding 
solutions. Many of the participants specifically included these aspects of the work of engineers into 
their responses alongside other practical activities such as designing and working as a team. Typically, 
the engineers that visited in person or were displayed on video talked about the impact of their work 
on people’s lives. Additionally, many of the challenges were rooted in real-world problems and 
described how engineers could work to solve the problems at hand. This change in participant 
responses represents a deeper understanding of what engineers do and why they do it. The participants 
understand that there is a purpose to the work of engineers. Such changes suggest that the messages 
from camp speakers, videos, and challenge scenarios may have influenced students to see engineering 
as helpful to the world around them.  
 Results from the career awareness section of the EDPQ were analyzed in two different ways 
to determine participants’ ability to name different types of engineers. The first analysis demonstrated 
that the total number of correct responses increased dramatically, and the number of incorrect 
responses and no responses decreased. This suggests that participants had a greater awareness of types 
of engineers after participating in camp activities, learning about engineers, and meeting engineers. 
Gathering the compilation of individual responses showed that multiple participants increased the 
numbers of engineering careers they could list. Furthermore, the most commonly named types of 
engineers were those that visited the camp to do a presentation.   
  These results suggest that participation in an engineering camp that focuses on career 
awareness can increase the number of possible career options in engineering that a student is able to 
consider. Studies of interest development and career choice in STEM suggest that exposure to 
available careers and engagement with the work of those careers can increase students’ interest in 
pursuing those careers (Mohr-Schroeder et al., 2014; Wai et al., 2010; Yilmaz et al., 2010). Additionally, 
students who are exposed to more examples of engineers and their work at a young age may be more 
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likely to view these options as possible future selves. This supports students in making the choices 
that might set them toward a career path in engineering because they envision that path as a possibility 
for themselves (Oyserman & Markus, 1990). 
 Attitudes toward engineering can encompass a variety of categories and therefore can be 
difficult to define. Lachapelle and Brennan (2018) discuss the development of attitudes toward 
engineering as the appraisal and judgement of “engineers, engineering as a profession, and learning 
experiences in engineering” (p. 222). The results from this study demonstrate that the engineering 
camp significantly increased students’ perceptions of the value of engineering to society and 
aspirations toward engineering. First, this suggests that engaging in the work of engineers during a 
camp with projects focused on real-world scenarios can improve participants’ attitudes about the role 
that engineers have in improving the world around us. Ing, Aschbacher, and Tsai (2014) demonstrated 
that seeing engineers making people’s lives better improved interest in engineering careers, especially 
among females. Secondly, there was an increase in participants’ aspirations toward engineering, which 
suggests that experience with engineers and engineering design may enhance participants’ belief in 
their potential future as engineers. This supports the view that availability of role models and career 
exposure can open the door for young people to develop possible selves as engineers (Oyserman et 
al., 1995). 
 It should be noted that while the subscale for value of engineering to the individual was not 
significant, it was nearing significance (p = .055) and demonstrated a small effect size (r = .30). This is 
important because participants came in with generally strong positive attitudes toward engineering 
already. The average response was 3.9 out of 5.0 at the beginning of camp. While this alludes to the 
self-selected nature of the camp participants, the increase in multiple subscales indicates that the camp 
did have a positive effect on students’ interests and attitudes toward engineering. 
 

Limitations and Suggestions for Future Research 
 
 It is important to note the limitations associated with this study that impact the generalizability 
of the findings. First, camp participation was voluntary with either students self-selecting into the 
program and/or students’ parents choosing to enroll them in the camp. Second, only a limited number 
of spots were available for participation each year due to resource limitations (e.g. facility space, 
personnel availability, cost of materials), and all participants hailed from the same midwestern 
community, limiting the geographic diversity of the sample. While we pooled data from two years of 
programming, the overall sample size was still relatively low. 
 Additionally, the data collected from the participants demonstrates the limited ideas that they 
were able to convey on paper instruments. While this data does provide worthwhile information for 
study, it would be beneficial to talk to students as well to gain a deeper understanding of their thinking. 
Future studies should include follow-up interviews with students to expand on this limited data, or 
interviews with parents to discuss the conversations that their children brought home during or after 
camp.  
 Despite the limitations, the study findings add to the knowledge base in engineering education 
and point to important areas for future research. The production of positive results indicates that the 
camp has many of the curricular characteristics that are beneficial for improving students’ 
understanding, awareness, and attitudes. However, future camps will need to continue to improve on 
these results by continuing to emphasize career awareness and the work of an engineer. Because the 
camp did not significantly improve students’ enjoyment of engineering, and the increase in 
understanding of the work of an engineer was small, future camps can also work to improve on each 
of these features. Finally, while the findings from this study indicate a positive result, there is little 
known about what causes students to move from their initial understandings and attitudes to their 
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final positions. Future studies should focus on these incremental changes and how students interact 
with engineering design while they are working on hands-on projects.   
 

Conclusion and Implications 
 
 This work adds to the literature on engineering education in two meaningful ways. First, the 
study illuminates how easily standard instruments can be influenced by the context of an intervention. 
In the current case, the WiE instrument was not able to discern changes in students’ pre to post 
understanding of engineering due to the inclusion of the item “engineers teach children.” When this 
item was removed from analysis, researchers were able to detect significant pre to post differences, 
indicating the need for researchers to carefully consider how instrument items might limit detection 
of gains under certain conditions. Furthermore, instruments may not always give an accurate depiction 
of a person’s thinking or be able to detect changes, as evidenced by the lack of consistency in 
participant responses to similar questions on the WiE and EDPQ instruments.  
  Second, this work adds to the literature by providing evidence that an informal learning 
opportunity focused on engineering career awareness can enhance elementary-aged students’ 
awareness of different disciplines of engineering and their aspirations towards engineering. The need 
for students who pursue an engineering career path is continuing to grow (World Economic Forum, 
2017), and this need will only be met as students develop interest in engineering and believe that they 
have a possibility of becoming an engineer (possible self) in the future (Oyserman & Markus, 1990). 
While interest can be developed at any time, students who develop an interest in physical science or 
engineering careers by the 8th grade are 3.4 times more likely to pursue a career in those fields than 
those who are not interested at that time (Tai et al., 2006). Informal learning experiences such as camps 
have demonstrated promise in developing these interests in young students, and the engineering camp 
in this study adds to those results. The camp improved students’ understanding of the work of an 
engineer, and most participants left camp with a greater awareness of the types of engineers and 
engineering careers that are available to them, possibly enhancing their ability to see a possible future 
self of engineer. Furthermore, participants’ attitudes about the value of engineering and aspirations 
toward engineering became more positive through the camp. These findings suggest that a learning 
experience that incorporates hands-on activities that resemble the work of an engineer, a focus on 
types of engineering careers, and interaction with engineers can provide some of the pieces necessary 
to prepare a workforce that will meet the needs of our future society.   
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ABSTRACT 
 
Proofs are attempts to conclusively demonstrate the validity of the claim for all cases indicated 
within its domain, which implies that proving should involve thoughtful consideration of the 
domain. This study analyzed the enactment of three general claim tasks, or tasks where the domain 
of the claim referred to an infinite number of cases, that were used during an introduction-to-proof 
teaching experiment with 10 ninth grade students. We analyzed the tasks in terms of the 
opportunities students experienced to engage in reasoning-and-proving and attend to the domain 
of the claims. The use of general claim tasks provided students with opportunities to engage in 
varied reasoning-and-proving activities, including forms not typically found in textbooks. Students’ 
attention to the domain of the claims increased over the course of study as a result of the teacher-
researcher’s continued focus on this aspect of the tasks, although their attention did not always 
encompass all cases within the domain. By making the domain of mathematical claims a central 
focus, we emphasize its important role in the reasoning-and-proving opportunities afforded to 
students and contribute to an understanding of students’ early interpretations of this aspect of proof 
tasks. 
 

 
Keywords: reasoning and proving, instructional intervention, secondary mathematics, geometry 
 

Introduction  
 

The types of reasoning-and-proving tasks given to students impact their learning opportunities 
and shape the way in which they are able to reason about the mathematical content. With respect to 
reasoning-and-proving tasks used in high school geometry, students’ opportunities are influenced not 
only by the validity of the claim, but also by the number of cases indicated within the domain of the 
claim (a single case, multiple but finitely many cases, or infinitely many cases) (Stylianides & Ball, 
2008). For instance, claims involving a single case (e.g., prove a given triangle ABC is congruent to 
triangle DEF) can be essentially proven or certainly disproven by measuring the given sides and angles, 
whereas claims involving infinitely many cases (general claims) provide an intellectual necessity for a  
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deductive approach1. In other words, since general claims cannot be proven using examples 
(Buchbinder & Zaslavsky, 2019), they are particularly well-suited to motivate the need for deductive 
reasoning (Otten, Gilbertson et al., 2014). 

In addition to motivating deductive reasoning, general claim proof tasks in high school 
geometry courses can allow students to consider fundamental mathematical ideas. Because a proof of 
a general claim eliminates the possibility of counterexamples, it can result in the prover’s ability to say 
with absolute certainty that a mathematical statement is true for all cases within the domain of the 
claim (e.g., Ellis et al., 2012; Fischbein, 1982). This is not to say that the production of a proof 
necessarily convinces a student the claim is always true (Rodd, 2000), just that it offers a level of certainty 
not afforded by examples. The ability to know with absolute certainty that a claim is always true is one 
way that mathematics (and physics) distinguishes itself from the biological sciences (Schoenfeld, 2000). 
Additionally, the use of both general and particular claims allows students to reflect on the number of 
cases encompassed within its domain, a worthwhile endeavor in and of itself that does not receive 
sufficient attention (Mason, 2019). Finally, the use of general claims reflects the broader practice of 
mathematicians who seek to pose and prove conjectures that encompass as many cases as possible.  

Given the benefits of general claims, it is unsurprising that they are commonly used in studies 
focused on secondary students’ understanding of proof and their ability to construct proofs (e.g., 
Buchbinder & Zaslavsky, 2019; Chazan, 1993; Healy & Hoyles, 2000; Knuth et al., 2009). This focus 
on general claims is not reflected within the reasoning-and-proving opportunities provided in 
textbooks. Otten, Gilbertson et al. (2014) analyzed U.S. high school geometry textbooks and found 
that student exercises involve particular claims much more than general claims. The discrepancy 
between the domain of claims used in proof tasks by researchers and those found in geometry 
textbooks highlights a need to better understand how the use of general claim tasks potentially impacts 
students’ opportunities to (1) engage in the reasoning-and-proving process and (2) consider the 
domain of the claims being proven. Thus, this study examined a series of general claim tasks used 
during an introduction-to-proof teaching experiment with ten ninth grade students in the Midwest 
United States. Specifically, we examined the learning opportunities of proof-related tasks, as set up by 
the teacher-researcher, implemented with students and how students attended to the domain of the 
claims, evidenced in their written and verbal work. By making general claim proof tasks an explicit 
item of focus, we seek to promote greater understanding of the relationship between the domain of 
the mathematical claim and students’ learning opportunities.  
 
Defining Key Terminology 

 
Reasoning-and-proving is used to refer broadly to all of the activity that goes into establishing the 

truth-value of a claim, from proposing a conjecture and investigating the validity of the claim, to 
constructing a proof or providing a justification that does not reach the level of a proof (non-proof 
rationale) (G. J. Stylianides, 2008). The term proof refers to “a mathematical argument, a connected 
sequence of assertions for or against a mathematical claim” that uses acceptable justifications, valid 
modes of argumentation, and representations that are appropriate and understood by the classroom 
community (A. J. Stylianides, 2007, p. 291). Although Stylianides (2007) focused on the classroom 
community in an elementary setting, in the present study we interpreted the terms “valid”, 
“acceptable”, and “appropriate” according to both the classroom community and the broader 

                                                       
1 There are specific mathematical claims that require deductive reasoning (e.g., prove that 2191 – 1 is prime); however, these 
claims do not tend to be located in high school geometry textbooks. Within secondary education, claims occasionally fall 
into a separate category when they ask students to prove a claim for a relatively small number of cases (e.g., for numbers 
1-20; see Knuth et al., 2009). For these tasks, students can reasonably check every single example (proof by exhaustion). 
That said, these claims tend to be numerical and are not typically used in high school geometry courses. 
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mathematics community because the context of secondary mathematics marked a shift toward formal 
proving. Additionally, we use the term proof as an adjective describing the tasks where students were 
expected to construct a proof and the term argument to refer to students’ verbal or written work made 
in response to a proof task. Note that the term argument does not carry judgment about the quality of 
students’ response or the extent it is aligned with Stylianides’ (2007) and our definition of proof. 

Recall that the domain of mathematical claims refers to the number of cases implicitly or explicitly 
referred to in the mathematical statement or theorem. Fischbein (1982) articulated the important role 
the domain of claims has in the proving process saying, “The level of generality of the theorem is then 
explicitly defined by the theorem itself and the proof refers exactly and clearly to that level of 
generality” (p. 15). In other words, theorems and statements to be proven indicate the domain of the 
claim (level of generality) and proofs demonstrating the validity of a given claim must clearly 
demonstrate it for all cases included within the domain of the claim. We continue with Otten, 
Gilbertson, and colleague’s (2014) use of the terms particular and general statements to distinguish between 
proof tasks involving claims that reference a single case (particular statements) and those that 
encompass an entire, often infinite, set of cases (general statements). Geometric proof tasks that fall 
under the latter category typically use the quantifiers “all”, “every”, or “a” (i.e., “an arbitrary case”) to  
indicate the domain of the claim. 
 

Theoretical Perspective and Literature Review 
 
Opportunities to Learn 

 
Although there is a large body of literature focused on the teaching and learning of proof, few 

studies have specifically focused on students’ opportunities to learn reasoning-and-proving with 
respect to the domain of the mathematical claims. Opportunity to learn originally referred to whether 
students, prior to being assessed, solved mathematical problems similar to those contained in the 
assessment (Husen, 1967, as cited in Floden, 2002). It is important, however, when determining 
students’ opportunities to learn how to solve a certain type of problem, to disentangle the content 
topic of the problem and the specific formulation of the problem (Floden, 2002). In other words, it is 
one thing for students to be exposed to the mathematical ideas necessary to solve a problem; it is 
another thing for them to have practiced the exact type of problem presented in an assessment. As 
discussed above, proof tasks involving general claims may deal with mathematical content that is 
familiar to students, but their prior experiences may have been formulated with particular claims or 
situated within learning opportunities that did not draw attention to the domain of the claim. 

The opportunities to learn framework can be particularly powerful when analyzing 
mathematics classrooms and instructional interactions given its demonstrated ability to connect 
teaching and learning (Hiebert & Grouws, 2007). The value of this perspective has emerged since the 
1960s as opportunity to learn has come to be framed as more than topic coverage or problem-type 
familiarity; one can consider the topics together with the level of cognitive demand students’ 
experience (Gamoran et al., 1997), the topics combined with the classroom learning environment 
(Tarr et al., 2013), or the interactions that occur in the classroom while topics are being taught (Jackson 
et al., 2013). In this study, we take the latter approach as we move beyond studying opportunities in 
textbooks (as summarized in the following sections) to a consideration of the opportunities that 
students have to think and discuss the reasoning-and-proving process as they work on tasks. In 
particular, we analyze the opportunities to engage in the reasoning-and-proving process within the 
tasks as launched by the teacher-researcher and in students’ engagement in the tasks in order to allow 
for possible differences between the tasks’ potential and realized opportunities (Stein et al., 1996).  
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Students’ Attention during Mathematical Tasks 
 
While it is certainly important for students to engage in the desired forms of reasoning-and-

proving in order to increase their opportunity to learn this mathematical practice, doing so does not 
necessarily ensure that the intended learning will occur. Mason (2008) contended that “what teachers 
can do for learners, indeed perhaps the only thing they can actually do for learners, is to direct learners’ 
attention [italics in original]” (p. 31). Ingram (2014) agreed, noting that students’ attention can be 
influenced by features of the task and the interactions they have with teachers. Yet, even in instances 
where students and the teacher are collectively working on a single task, there is a potential for 
miscommunication to occur due to differences in where their attention is focused (Mason, 2008). 
When considering students’ attention, one can focus on where that attention is directed but also the 
structure of attention. Structures of attention, according to Mason, include “holding wholes, 
discerning details, recognizing relationships, perceiving properties and reasoning on the basis of agreed 
properties” (2008, p. 35).  

In order to understand the differences in the way that novices and experts attend to 
mathematical ideas, Mason and Davis (1988) coined the term “shifts in attention”, which they defined 
as a moment, either sudden or gradual, “in which one becomes aware of what used to be attended to 
was only part of a larger whole, which is at once, more complex and more simple” (p. 488). During 
the proving process, students should begin shifting their attention away from specific details in 
examples or diagrams, towards a focus on generalizing through attention to mathematical relationships 
(Ellis, 2011). When interpreting mathematical statements being proven, students should recognize that 
the words all, every, and any indicate the impossibility of an exception that satisfies the criteria in the 
hypothesis but contradicts the conclusion (Harel & Sowder, 2007). Diagrams play an important role 
in many geometry proof tasks. Using diagrams when proving a general claim requires the ability to 
view the diagram as both an expression of generality (that is, a representation of all diagrams indicated 
within the domain of the claim) and as an object that can be manipulated (through rotations, adding 
notation, axillary lines, etc.) (Mason, 1989). Teachers can interpret diagrams as figural concepts, 
possessing both spatial properties and conceptual qualities (Fischbein, 1993) in part because they have 
been enculturated into the community of mathematics, wherein attending to the generality of 
mathematical claims is a central idea. In contrast, students who have not yet undergone this shift in 
attention may interpret the diagram only through the lens of its spatial properties or other features 
that are specific to the diagram drawn. Mason (1989) conjectured that “this is precisely where 
sophisticated mathematician-teachers, unaware of the momentary abstraction in themselves, miss the 
need to attend to the abstracting movement in their students” (p. 6). While it is important for teachers 
to attend to the ways that students are interpreting mathematical diagrams, shifting their attention 
towards the generality of claims is not something that a teacher can do or force onto students (Mason 
& Davis, 1988), nor is it something that can be achieved solely through calling attention to this aspect 
of mathematical claims (Mason, 2004). But students’ opportunities to engage with general proof tasks 
may provide the context in which shifts in attention can occur. 
 
Reasoning-and-Proving Opportunities in Textbooks 

 
From the opportunities to learn perspective, students’ thinking about reasoning-and-proving 

and the domain of mathematical claims is influenced by the opportunities embedded in curriculum 
materials. With respect to the introduction to proof chapters in U.S. Geometry textbooks, Otten, 
Males, and Gilbertson (2014) found that the student exercises primarily provided opportunities for 
them to investigate or pose conjectures and develop non-proof rationales, but few opportunities to 
construct a proof. Given that the introduction to proof chapter occurs early in Geometry textbooks, 
it makes sense that students’ content knowledge might limit the number of proof tasks that are 
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appropriate for the beginning of the school year. However, the limited opportunities to construct 
proofs suggests that students are developing their initial understanding of proof without actually 
engaging in the proving process. Looking at a random selection of the remainder of the Geometry 
textbooks, beyond the introductory chapters, Otten, Gilbertson et al. (2014) found that proof 
opportunities were prevalent, but they predominantly involved particular claims. The general claims 
that applied to infinite sets of geometric objects were typically presented in the textbook narrative, not 
the student exercises. 

This focus on the domain of the claims is important because, although most reasoning-and-
proving textbook studies (e.g., Fujita & Jones, 2014; Hanna, 1999; Miyakawa, 2012; Stylianides, G., 
2009) have consistently examined the type of argument elicited (e.g., empirical, generic example, direct 
proof), it is by identifying the domain of the mathematical claims (i.e., general, particular, or general 
with particular instantiation) that we can consider whether those opportunities involved claims that 
necessitate a deductive proof. As Otten, Gilbertson et al. (2014) pointed out, deductive reasoning is 
powerful enough to establish the truth of both particular and general claims, but only deductive 
reasoning is able to establish the truth for general claims. Thus general claims necessitate deduction 
to a greater degree than do particular claims. Based on the findings that general claims were relatively 
rare in student exercises in U.S. Geometry textbooks, Otten, Gilbertson et al. (2014) called for future 
research analyzing the enactment of these opportunities in order to understand the role that the 
domain of mathematical claims might play with regard to students’ experiences with proof.  
 
Reasoning-and-Proving Opportunities in Classroom Settings 

 
Research on proof instruction in secondary classrooms have primarily described whole-class 

conversations (e.g., Otten et al., 2017), providing only a snapshot into the reasoning-and-proving 
opportunities afforded to students in the classroom. Within this setting, teachers tend to spend a 
significant amount of time in their Geometry classes focusing on the details of proofs, such as whether 
each “step” in the proof contained a mathematically-correct justification and logically flowed from the 
previous statements (Martin & McCrone, 2003; Otten et al., 2017; Schoenfeld, 1988). Furthermore, 
traditional classrooms tend to operate based on specific norms around who is responsible for different 
aspects of the proving process (Herbst & Brach, 2006). For instance, students are rarely asked to prove 
their own conjectures (Boero et al., 2007); in instances where students are asked to conjecture, the 
teacher tends to confirm whether it is correct before students prove the claim (Herbst & Brach, 2006). 
In contrast to the teacher-driven reasoning-and-proving that occurred in the prior studies, Martin and 
colleagues (2005) described four classroom episodes where the teacher and students shared ownership 
in the reasoning-and-proving process. In these episodes, the teacher used revoicing and coaching in 
order to hold students accountable for contributing to the construction of the proofs. All of the whole-
class conversation captured in the aforementioned studies focused on the task at hand (e.g., 
completing the proof) with little if any conversation that afforded students the opportunity to think 
broadly about reasoning-and-proving as a mathematical practice (Otten, Gilbertson et al., 2014).  

Proof studies in secondary classroom settings have primarily occurred toward the middle or 
end of the school year; as a result, little is known about how students are first introduced to proof in 
traditional classrooms. One exception are the studies conducted by Cirillo (2011; 2014), who reported 
that six teachers introduced proof in their Geometry classrooms through a show-and-tell approach. 
During the teachers’ proof demonstrations, Cirillo noted that the teachers did not explicitly unpack 
the many different components of proof, such as how they were using definitions to draw conclusions 
or what can and cannot be assumed from a diagram. In sum, there is still a need to better understand 
ways to introduce students to proof that utilizes a student-centered approach and develops students’ 
understanding of proof through engaging in the reasoning-and-proving process, especially as those 
early opportunities relate to the domain of the claims being proved. 
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Students’ Proving in Relation to the Domain of Mathematical Claims 

 
One consistent pattern throughout proof research is the finding that a non-trivial percent of 

students construct empirical arguments for general proof tasks (Reid & Knipping, 2010; G. J. 
Stylianides et al., 2017). The construction of empirical arguments for general claims has been 
documented in studies of middle school students (Knuth et al., 2009), high schoolers (Healy & Hoyles, 
2000; Lee, 2016; Senk, 1985), and undergraduate students (Harel & Sowder, 1998). Example use 
during the proving process is not inherently bad because students can productively use examples to 
gain insights into why a conjecture is true or uncover structural relationships (Aricha-Metzer & 
Zaslavsky, 2019). Nonetheless, students’ use of examples as justification can reveal challenges in 
understanding that the goal is to construct an argument that applies for all cases, where no exceptions 
are possible (Harel & Sowder, 2007). 

There are multiple possible explanations for why secondary students tend to produce empirical 
arguments when proving general claims. First, it is possible students recognize that empirical 
arguments do not prove general claims, but still write them because they lack the mathematical skills 
to be able to construct a more general argument (e.g., Bieda & Lepak, 2009; Healy & Hoyles, 2000; 
Reiss et al., 2001). However, this explanation does not account for instances when students use a few 
examples as justification in instances when proof by exhaustion would be a valid approach (Knuth et 
al., 2009). A second possibility is that some students misinterpret or do not recognize the domain of 
a mathematical claim due to a lack of explicit language indicating that the statement applied to an 
infinite number of cases (Mason, 2019). Or, it is possible that students are attending to the quantifiers 
indicating the domain of the claim but interpret them using a “real world” rather than mathematical 
definition (Pimm, 1987). These potential explanations speak to the importance of scholars not only 
attending to the empirical or deductive arguments that students produce, but also to their 
interpretation of the claim’s domain. 

While students can productively use diagrams as a planning tool or to capture their progress 
in a deductive argument (Cirillo & Hummer, 2021), others interact with diagrams in ways that suggest 
an interpretation of the diagram as a specific example (Herbst, 2004). Like Chazan (1993), Martin and 
colleagues (2005) found that students requested a proof for a second type of triangle even though the 
claim had been proven for a generic triangle, a request that suggests a lack of realization that the 
original proof demonstrated the claim was true for all triangles. In both instances, it is possible that 
the students were attending to generic and specific features of the diagram rather than interpreting it 
as a generic example. Infrequent opportunities to produce their own diagrams may also contribute to 
students’ limited understanding of how to appropriately interpret a diagram. Although the norm of 
teachers or textbooks providing diagrams (Cirillo, 2018; Herbst & Brach, 2006) increases the 
consistency and accuracy of the diagrams students use, it limits their opportunities to reason about 
what the diagram represents or about the generality indicated within the proof claim (Komatsu et al., 
2017). 
 
Research Questions 

 
Collectively, prior research on students’ understanding of proof and the ability to construct 

proofs highlights a need for changes to the ways that proofs are taught in the classroom, particularly 
in order to fulfill the recommendations that reasoning-and-proving should be a central part of K–12 
instruction (Ministry of Education, Science and Technology, 2011; National Council of Teachers of 
Mathematics, 2009; National Governors Association & Council of Chief State School Officers, 2010). 
This study extends the textbook analysis of Otten, Gilbertson et al. (2014) by analyzing the enactment 
of three general claim tasks in terms of the reasoning-and-proving opportunities they afforded, and 
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students’ attention to the domain of mathematical claims. The research questions that guided the 
analyses were as follows: 

RQ1. What opportunities for reasoning-and-proving were present in general claim tasks set up 
by the teacher-researcher and implemented with students during an introduction to proof unit?  
RQ2. How, if at all, did students attend to the domain of the claims and what, if any, shifts in 
attention occurred over the course of a task enactment? 

Both questions were addressed through an analysis of students’ oral and written work on the tasks, 
with the data and analytic processes described in detail in the next section. 

 
Method 

 
Participants and Data Collection 
 

Ten students participated in this study—seven females (Amanda, Arin, Heather, Lauren, Lexi, 
Megan, and Sadie) and three males (Brian, Clay, and Wilson; all pseudonyms). They were the only 
students enrolled in an accelerated ninth grade mathematics course at a rural, public school in the 
Midwest United States. The accelerated program covered Algebra 1 and 2 content in ninth grade; 
subsequently, the study provided the students first formal high school Geometry instruction. All 
sessions were held during the school day but outside of their regular mathematics class. Students 
received a graphing calculator for their participation.  

The exploratory teaching experiment (Steffe & Thompson, 2000) consisted of 14 sessions, 
held twice a week with each session lasting between 28 and 38 minutes. All sessions were taught by 
the first author, who is identified as the teacher-researcher (TR) in this article. The use of a researcher 
as the teacher is consistent with teaching experiment methodology (e.g., Cobb & Steffe, 1983; Steffe 
& Thompson, 2000) and should not be confused with self-study methodology, wherein the researcher 
studies their own teaching in classrooms where they are the main instructor. Every session was video 
and audio recorded to ensure that students’ gestures, manipulation of physical objects, and voices 
during small-group discussions could be reviewed, with one audio and video recorder placed near each 
group. Additionally, all written work and students’ responses to journal prompts were collected during 
the sessions. For this study, audio/video recordings served as the primary data source; students’ 
written work and journal reflections were referenced as needed in order to provide a more complete 
picture of what occurred during the sessions. 

 
Teaching Experiment Design and Rationale 

 
Exploratory teaching experiment methodology is used to study students’ ways of 

understanding and operating with particular content in instances when testing the researchers’ 
hypotheses for learning may not be appropriate (Steffe & Thompson, 2000). In particular, this 
methodology was selected in order to better understand students’ ways of understanding proof while 
engaging in tasks that are not commonly found in traditional classrooms. The primary goal of the 
present study was to develop students’ understanding of the purpose of proof through their 
engagement in tasks that emphasized the proving process as a means of a) developing certainty that 
the given statement is always true and b) understanding why it is always true (de Villiers, 1990; Hanna 
& Jahnke, 1996). Specifically, we hypothesized that the explanatory feature of proofs could help 
students transition away from empirical arguments since examples on their own do not tend to explain 
why a statement is true. We chose to only use tasks involving general claims based on the hypothesis 
that they could facilitate student understanding that a proof must contain justifications that 
encompassed all objects within the claim’s domain, particularly when accompanied by conversations 
where the domain was an explicit object of focus.  
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The TR structured the instruction so that students developed their understanding of proof as 
they engaged in various reasoning-and-proving activities. The goal to engage students in authentic 
reasoning-and-proving has been used in a variety of intervention-based studies (e.g., G. J. Stylianides 
et al., 2017). For example, the present study’s use of general claims and having students prove their 
own conjectures was successfully used in a study with eighth graders (Boero et al., 1996). Finally, we 
incorporated statements about reasoning-and-proving (Otten, Gilbertson et al., 2014) into whole-class 
discussions and through the use of reflection prompts in order to focus students’ attention on specific 
aspects of proofs. Although hypotheses for learning were developed to guide the instruction, 
additional iterations of the teaching experiment would be needed in order to test and revise the 
instruction so that students’ ways of understanding aligned with the researcher’s hypotheses (or the 
hypotheses could be revised upon further iterations). During the sessions, the TR did not focus on 
the form of proofs, but instead allowed students to write arguments in a way that made sense to them.  

The primary tasks used in this study were developed before the start of the experiment based 
on the hypotheses described above. On the other hand, the time spent on each task and select sub-
tasks were devised during the study in response to where the TR interpreted students to be in their 
current understanding. For example, the original tessellation task, “do all quadrilaterals tessellate?” 
was pre-planned, but the follow-up task, “do all regular polygons tessellate?” was added mid-
experiment in an attempt to focus students’ attention on both the sides and angles of polygons. We 
describe the three focal tasks in the following sections; see Appendix A for a description and rationale 
for an overview of the entire instructional sequence.  
 
Overview of the Tessellation Tasks 
  

After reviewing the definition of quadrilaterals and introducing tessellations, the TR launched 
the tessellation task by posing the question, “Do all quadrilaterals tessellate?” Students were given six 
sets of different convex quadrilaterals to aid in their investigation. At the end of the session, the TR 
asked students to journal how confident they were that quadrilaterals always tessellate and to describe 
how they would explain their answer to a friend. In Session 2, students were asked to write a set of 
“step-by-step” directions for how to tessellate any quadrilateral. Each group was given some of the 
quadrilaterals from Session 1 as well as two concave and one convex quadrilaterals to use during the 
task. In Session 3, the TR introduced the next subtask by asking students if they knew of other 
polygons that they thought would always tessellate. After eliciting their ideas, the TR introduced 
regular polygons and referenced familiar examples. Next, the TR posed the question, “Do all regular 
polygons tessellate?” Regular polygons were selected because they fit within students’ directions for 
tessellating quadrilaterals, despite only some tessellating. In order to investigate this question, the TR 
first provided all groups with a set of regular hexagons and then passed out regular pentagons, 
septagons, and octagons (one per group) to “speed up” the process. The reflection prompts provided 
in Session 3 (see Appendix A) were used to encourage connections across the tasks and motivate a 
need to understand why quadrilaterals always tessellate. The term “counterexample” and the idea that 
only one counterexample was needed to disprove a general claim was introduced to students towards 
the end of Session 3. The TR concluded the tessellation task in Session 4 by summarizing the key ideas 
from the first three sessions and then explaining why quadrilaterals and regular hexagons, but not 
regular septagons or octagons, tessellate. 
 
Overview of the Constructing Quadrilateral Diagrams Task 
 
 Prior to launching the diagrams task, the TR briefly introduced students to conditional 
statements and demonstrated how they are used in the proving process by talking through an informal 
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proof of the conditional statement, “If a quadrilateral has 360°, then it will tessellate.”2 Afterwards, 
students worked in three small groups to draw diagrams for statements 1–3 during Session 7 and 
statements 4–6 during Session 8 (Table 1). Since they had not yet taken high school Geometry, the 
theorems were rephrased to exclude potentially unfamiliar terminology such as “congruent,” 
“consecutive angles,” and “supplementary.” At the end of each session, the whole class discussed 
specific features of the diagrams, including the different notation methods they had used.  
 
Table 1 
 
Statements Used in the Constructing Diagrams for Quadrilateral Theorems Task 
 

1. 

2. 
 

3. 

4. 

5. 

6. 

If the polygon is a rectangle, then the diagonals have the same length. 

If a quadrilateral is a parallelogram, then the measures of the angles on the same side of the shape add to 
180 degrees. 

If a quadrilateral is an isosceles trapezoid, then the diagonals have the same length. 

If two sides of a parallelogram that intersect have the same length, then the parallelogram is a rhombus. 

If the diagonals of a parallelogram form a 90-degree angle, then the parallelogram is a rhombus. 

If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle.  

 
Overview of the Proving Similar Polygon Conjectures Task 
 

The TR introduced the similar polygons task by asking students to pose conjectures of specific 
polygons that they thought might be similar (i.e., “all ____ are similar”). During the launch, they 
discussed the teacher-posed conjecture “all polygons are similar” to make sure that students 
understood the conjecture and remembered how to use a counterexample to disprove a conjecture. 
Students posed four conjectures that involved classes of polygons that were always similar to one 
another: squares, equilateral triangles, right triangles, and rhombuses. After constructing their 
argument for the conjecture “all squares are similar”, small groups exchanged papers and provided 
feedback to their peers. The TR posed the following questions to focus students’ feedback: “Is it 
convincing? Does it convince you that no matter what two squares I draw, they’re going to be similar? 
And is there anything someone could say to poke a hole in the argument?” Next, each group revised 
their own argument in response to the two sets of peer feedback they received. In Session 12, the TR 
led the entire class through the proof of the conjecture, “all squares are similar”, which built on 
elements that were in students’ arguments from the previous session. Afterwards, students 
investigated the classes’ conjectures for right triangles and equilateral triangles and then constructed 
an argument demonstrating that the conjecture was either true or false. Students investigated the final 
conjecture, “all rhombuses are similar”, during the final interview and then constructed an argument 
either proving or disproving it, depending on their belief in the conjecture’s validity.  
 
Analytic Process 

 
In addition to rooting our study in the literature previously described and explaining the 

relationship between the researchers and study participants, we now articulate our process in the data 
                                                       
2 This claim was stated by one of the students in an earlier session. We chose to use their phrasing in order to connect to 
the student’s earlier words instead of starting with a claim that was more mathematically precise. During the class 
discussion, the TR clarified that the hypothesis referred to the angles of a quadrilateral. 
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reduction and analysis process in order to make claims using qualitative research methodology (Noral 
& Talbert, 2011). We restricted our analysis of the data to sessions involving geometric tasks. There 
were five broad geometric tasks: the tessellation tasks (Sessions 1-4; 103 minutes), constructing 
diagrams task (Sessions 7-8; 68 minutes), constructing a definition for similar polygon conjectures task 
(Sessions 9–10; 62 minutes), proving similar polygon conjectures task (Sessions 11–12; 157 minutes3), 
and proving the exterior angle theorem task (Session 13; 34 minutes). The unit of analysis was a 
response (written and/or verbal) to one question or prompt (subtask) within the identified tasks. 
Specifically, units of analysis spanned the time between when student(s) started and completed each 
subtask in whatever grouping configuration they were placed. Most subtasks were completed in three 
small groups; however, six subtasks (four reflection and two math prompts) were completed 
individually. We excluded whole-class discussions in instances when they only reiterated students’ 
small group work so as not to double analyze reasoning-and-proving activity. Collectively, there were 
119 units to be analyzed. In this article, we present findings for the tessellation, constructing diagrams, 
and proving similar polygon conjectures tasks since they best illustrate the range of reasoning-and-
proving that occurred.  

To answer RQ1, we analyzed the session data using the qualitative research software 
MAXQDA to determine the opportunities students had to engage in reasoning-and-proving based on 
the launch and implementation of each task. In order to make comparisons between the types of 
reasoning-and-proving opportunities found in regular Geometry textbooks and the instruction used 
in this study, we adapted the expected student activity portion of Otten, Gilbertson et al.’s (2014) 
analytic framework, which was a modified version of Thompson and colleagues (2012)’s framework 
(see Table 2). 
 
Table 2 
 
Reasoning-and-Proving Student Activity Codes 
 

Related to Mathematical Claims  Related to Mathematical Arguments Emergent Codes 

● Make a conjecture, refine a 
statement or conjecture, or draw 
a conclusion 

● Fill in the blanks of a conjecture 
● Investigate a conjecture or 

statement 

● Construct a proof  
● Develop a rationale or non-

proof argument 
● Evaluate an argument/proof 
● Find a counterexample 

● Make sense of a 
mathematical claim 

● Construct a diagram 
● Revise an 

argument/proof 

 
Note. The codes in the first two columns are from the framework described by Otten, Gilbertson et al. (2014). 
 

We adapted Otten, Gilberston et al.’s (2014) framework such that it applied to both the 
anticipated reasoning-and-proving activity and the reasoning-and-proving students actively engaged 
in during the sessions. For example, in the exchange below during the proving similar polygons task, 
both students’ comments were coded as develop a rationale or non-proof argument. Additionally, the entire 
exchange was included within a broader evaluate an argument/proof code to capture the broader 
reasoning-and-proving activity being completed.  

                                                       
3 Students individually completed the final prompt of this task during the final interview; this accounted for 93 of the 157 
minutes.   
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Wilson: I don’t think [the angles] should be [labeled] A, B, C, D, I think it should be 
A, A, A, A cause they’re all the same angle 

Megan: and then they need those [notation] on the edges [sides] of the square to 
show that it’s the same length cause that’s what makes it a square. 
 

Develop a rationale or non-proof argument was used in instances when students provided a 
justification for a single statement (“because…”) and in instances when students were asked to 
“explain” or provide a justification for “why” a claim is true. In contrast, construct a proof was used in 
instances when the task directly asked students to prove a mathematical claim. Note that the presence 
of this code did not guarantee that the resulting product contained all of the required elements to be 
considered a proof. During the coding process, we identified additional instances of reasoning-and-
proving that occurred in the sessions but were not captured by Otten, Gilbertson et al.’s (2014) codes. 
This resulted in three additional codes: make sense of a mathematical claim, construct a diagram for a 
mathematical statement4, and revise an argument/proof. Make sense of a mathematical claim was used in instances 
when students talked about a claim without trying to determine whether it was valid (the latter would 
be coded investigate a conjecture or statement). For example, Arin’s second statement below, which occurred 
during the constructing diagrams for quadrilateral theorems task, was coded make sense of a mathematical 
claim because she was not trying to actively determine if the claim was true. 

Arin: (reading) “If a quadrilateral is a parallelogram” is that the like one that’s straight 
lines and then it like (makes a slanted line gesture with her hands) 

Sadie: Yeah 
Arin: Okay. (reading) “then the measures of the angles on the same side of the shape 

add to 180.” Yeah, because one angle is going to be bigger than the other. 
 

Instances when students discussed mathematical vocabulary, such as Arin’s first sentence, were not 
coded as make sense of a mathematical claim because it was activity outside of the reasoning-and-proving 
process. Finally, the code revise an argument referred to instances when students revised their draft 
argument in response to peer feedback. To increase trustworthiness (Lincoln & Guba, 1985), the 
authors had continual calibration conversations with one another and also produced preliminary 
analytic memos that were vetted by an outside observer. 

To answer RQ2, we first analyzed students’ discussions during each task in order to assess 
how, if at all, students were attending to the domain of the claims. Although it is not possible to 
ascertain what students were internally attending to at a particular moment in time, we could look for 
evidence of shifts in attention through what they said or did in their conversations with peers (Barwell, 
2002, as cited in Ingram, 2014). Examples of students demonstrating attention to the domain of the 
claim include a student responding to a peer’s assertion by saying, “no that’s not true for all of them”. 
Next, we analyzed students’ written work for evidence of attention to the domain of the claims. 
Specifically, we determined whether students’ justifications, constructed diagrams, and notation 
methods encompassed all cases within the claim’s domain. Although we coded students’ written work 
as indicating attention to the domain of the claim, or a lack thereof, we recognize the possibility that 
a student could construct a general argument or notate their diagram with variables for reasons other 
than their understanding of the claim’s domain. Additionally, it is possible that a student could 

                                                       
4 Constructing a diagram could have been coded using the “modify or revise a mathematical statement” code since students 
were adding a diagram to accompany the provided statements. However, a new code was added to emphasize the fact that 
textbooks and teachers rarely, if ever, hold students responsible for producing a diagram for a proof task (Cirillo, 2018; 
Herbst & Brach, 2006). 



VARIED REASONING DURING GENERAL CLAIM PROOF TASKS     53 

recognize the domain of the claim but produce an argument that only refers to a finite number of 
cases. 

After coding for individual instances of attention to the domain of claims, we then looked 
across the coded data for evidence of shifts in attention (Mason & Davis, 1988). For example, if a 
group of students initially labeled their diagram with specific angle or side measurements in one 
instance, but later labeled them with variables, this would indicate a shift in attention to the fact that 
the mathematical claim being represented by the diagram refers to an infinite class of quadrilaterals. 
All instances where the students’ attention to the domain of the claim was unclear were discussed with 
an outside observer; in these instances, we include possible alternate interpretations in the results. 
 

Findings 
 

We describe students’ engagement in three general claim tasks in terms of the reasoning-and-
proving opportunities that surfaced during the tasks. We then share students’ interpretation of and 
attention to the domain of each mathematical claim. The findings are structured by task in order to 
(1) highlight the range of reasoning-and-proving afforded within a single task, and (2) acknowledge 
that the mathematical content of the task (Dawkins & Karunakaran, 2016), other features of the task, 
and its location in the instructional sequence may have influenced students’ attention to the domain 
of the claims. Across the three tasks, students engaged in all of the reasoning-and-proving 
opportunities set forth in the launch of the tasks as well as additional, unplanned reasoning-and-
proving that arose during small-group and whole-class conversations. Although students 
demonstrated limited attention to the domain of the claims at the beginning of the tessellation task 
and constructing diagrams task, there were small shifts in attention by the end of both tasks. In 
contrast, during the proving similar polygon conjectures task, students attended to the domain of the 
claims throughout their conversations and through their written justifications. However, some 
students attended to the domain of the claims in a way that did not encompass all possible cases during 
the rhombus portion of the similar polygons task. 
 
Tessellation Tasks 
 
Varied Reasoning-and-Proving Opportunities 
 

The tessellation tasks, as launched by the teacher-researcher (TR), provided students with 
opportunities to investigate the validity of mathematical statements, construct a counterexample, and 
develop non-proof rationales for their assertions. Specifically, Session 1’s subtask (“do all 
quadrilaterals tessellate?”) resulted in non-proof rationales as students investigated how to tessellate 
different quadrilaterals in their small groups (Figure 1) and again as they individually summarized their 
responses in their notebooks. In Session 2, the subtask to create “how to” directions for tessellating 
any quadrilateral did not explicitly provide opportunities for students to engage in reasoning-and-
proving, but did encourage greater attention to the domain of the mathematical claims.  
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Figure 1 
 
Two Students Tessellating Different Irregular Convex Quadrilaterals in Session 1. 
 

 
Session 3 involved two subtasks; the first, “do all regular polygons tessellate?”, allowed 

students to investigate a conjecture and find a counterexample. The second subtask (“Do you still 
think that all quadrilaterals tessellate? If no, explain why. If yes, is there something special about 
quadrilaterals that make it so that they will always tessellate?”) provided opportunities for non-proof 
rationales. In addition to engaging in all of the intended reasoning-and-proving activity, students also 
made conjectures, posed counterexamples in response to a peer’s conjecture, and refined a peer’s 
conjecture. The additional reasoning-and-proving activities occurred in Session 3 while students 
discussed as a whole class the possible characteristics of polygons that tessellate. 

While investigating the validity of the claim (“do all quadrilaterals tessellate?”), students’ non-
proof rationales in their written reflections at the end of Session 1 referenced the different cases that 
had successfully tessellated and an assumption that the pattern would continue to hold true for other 
cases. For example, Sadie wrote, “I’m very confident that all quadrilaterals tessellate. Since we tested 
out many different shapes and they all worked, it helps prove my point. I would convince [a friend] 
by showing them how I found out that they all fit.” Similarly, Amanda wrote, “all quadrilaterals 
tessellate because if you match up one side of the quadrilateral, the other sides will have to match up 
too.” Across students’ written work at the end of Session 1, nine students included non-proof 
rationales to justify why they thought all quadrilaterals tessellate. 
 The final subtask around why all quadrilaterals, but not all regular polygons, tessellate 
produced the most varied opportunities for reasoning-and-proving, including activities that were not 
requested in the original prompt. After writing down their justifications, students discussed in small 
groups and then as a whole class possible reasons why only some polygons tessellate. The dialogue 
below occurred during the whole-class conversation. 

Amanda: I said that maybe after a shape gets like, like after they have four sides, like 
five and on, then maybe the angles become too wide, because they have too 
many sides 

TR: Okay. What do y’all think about that? 
Wilson: Well, hexagons work, but… 
TR: So hexagons work… Lexi, can you speak up a little bit?  
Lexi: Okay, well I said maybe. (Arin quietly interrupts her) 
TR: Go ahead [Lexi] and say what you were thinking. 
Lexi: Okay, well I said maybe like after four sides the sides have to be even with the 

amount, cause five didn’t work. 
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TR: Five didn’t work, yeah; so that would be a reason for that…but what, hold on, 
will you talk a little bit louder? 

Arin: The octagon didn’t work. 
 
In this exchange, Amanda and Lexi posed conjectures that described features of polygons they thought 
would tessellate (or not) and Wilson and Arin responded to each claim with a counterexample the 
class had previously investigated. The fact that hexagons tessellate was a counterexample to Amanda’s 
idea that polygons with more than four sides could not tessellate, and octagons failing to tessellate was 
a counterexample to Lexi’s idea that even-sided polygons might tessellate. The discussion is notable 
given that students had not yet been formally introduced to the use of counterexamples in the proving 
process or the idea of revising a claim. Instead, the additional unplanned reasoning-and-proving 
activity surfaced as students discussed two general claims (do all quadrilaterals tessellate? And do all 
regular polygons tessellate?) that were similar in structure but differed in validity. Through the use of 
two such general claim tasks, students were not only able to investigate the validity of the claims and 
provide non-proof rationales, but were also able to pose conjectures and counterexamples by looking 
across the two tasks. 
 
Increased Attention to the Domain of the Claim 
 

Throughout Session 1, students’ justifications relied on a lack of counterexamples rather than 
the identification of specific features of all quadrilaterals that result in them tessellating. Thus, there 
was little explicit attention on the domain of the claim. Students’ attention to the domain of the claim 
increased during Session 2 as they developed a series of “how to” directions for tessellating any 
quadrilateral. For example, Megan and Arin’s written directions stated: “1st we put opposite angles 
together. 2nd we repeated the first step as well as flipped and mirroring the shapes from the original 
two shapes. Same side length, different angles”. These directions represent a shift in attention from 
haphazardly moving copies of a quadrilateral around until they “fit” to purposefully placing the 
quadrilaterals together by focusing on the sides and angles. When describing how to tessellate any 
quadrilateral, Megan and Arin referred to generic sides and angles and did not mention more specific 
features that some, but not all, quadrilaterals contain (such as 90 angles or congruent sides). The 
reference to generic features of quadrilaterals may have been a result of the task prompt to create step-
by-step directions for how to tessellate any quadrilateral rather than a change in how students were 
interpreting the different provided examples, but regardless, the shift in attention was noteworthy. 

Small-group conversations in Session 3 revealed students’ varying attention to the domain of 
the claim. For example, Clay suggested they put two quadrilaterals together so that they make a nicer 
shape such as a rectangle or square, and Heather responded by saying, “that’s just for this shape, it’s 
not for all of them. Like different quadrilaterals make different shapes, not just a square.” Although 
Clay appeared to be focusing on features of certain quadrilaterals, Heather’s response suggests that 
she was considering multiple quadrilaterals when thinking about how to place the two copies together 
to form a tessellation. In the whole-class discussion around features of polygons that determine 
whether they will tessellate in Session 3, both Amanda and Lexi’s justifications referenced general 
features of polygons (the number of sides and angles) rather than specific characteristics. Students’ 
increased use of statements that applied to multiple if not all quadrilaterals in Sessions 2 and 3 suggest 
at least some attention to the domain of the claims. Given the explicit emphasis on all or any when 
launching the subtasks, it is possible that students’ use of these words in their conversations reflected 
the instructional focus rather than how they were mentally thinking about the claims (Mason, 2004). 
Nonetheless, students’ written work and conversations revealed moments where at least some 
students appeared to be considering multiple, if not all possible cases. 
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Constructing Diagrams for Quadrilateral Theorems Task 
 
Limited Reasoning-and-Proving Opportunities 

 
The constructing diagrams task, as launched by the TR, provided students with the 

opportunity to construct a diagram for six quadrilateral theorems (see Table 1 for task directions and 
Figures 2–4 for examples of student-constructed diagrams). In addition to engaging in the intended 
reasoning-and-proving activities, students also informally drew conclusions and made sense of the 
mathematical claims. For example, the three small groups’ diagrams for the theorem, “if one angle of 
a parallelogram is a right angle, then the parallelogram is a rectangle” are shown in Figure 2. 

As students constructed the diagrams, some began informally drawing conclusions from the 
hypotheses by applying their prior knowledge of quadrilaterals. While constructing the left diagram in 
Figure 2, Wilson argued that all of the angles had to be 90 degrees based on the given information. 
“This one has to be 90 degrees since...they’re all 90 degrees, yeah. Because these (adjacent angles) have 
to add to 180 and if one of them is 90 degrees, the other has to be 90 degrees.” Even though the task 
did not ask students to construct proofs for the given theorems, it allowed the opportunity for students 
to begin informally reasoning about the theorem and verbally begin to draft a rough outline for a 
mathematical argument. 
 
Figure 2 
 
The Three Small Groups’ Diagrams for the Theorem, “If One Angle of a Parallelogram is a Right Angle, then the 
Parallelogram is a Rectangle.” 
   

Note. The legend in the middle diagram reads, blue (vertical sides) = “parallel/congruent”; orange (horizontal 
sides) = “parallel/congruent”; pink (angles) = 90° angles. 
 

In addition to opportunities to construct diagrams and informally draw conclusions, the task 
also provided opportunities for students to make sense of each claim. This was especially true for the 
last three theorems in the task (Table 1), since the theorems referenced a different quadrilateral in the 
hypothesis and the conclusion. When constructing a diagram for the theorem, “if one angle of a 
parallelogram is a right angle, then the parallelogram is a rectangle”, Arin, Sadie, and Brian initially 
constructed the figure by drawing a right angle and then a slanted line “because parallelograms have 
slant.” As a result of only attending to the information in the hypotheses, their diagram resulted in a 
right trapezoid rather than a rectangle. Through a discussion with the TR, the students were able to 
connect their understanding of the definition of a parallelogram to recognize that they could construct 
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a rectangle to satisfy both the theorem’s hypotheses and conclusion. While the constructing diagrams 
task afforded more limited opportunities for reasoning-and-proving, the use of general claims for the 
task required students to make sense of the claims and afforded opportunities to informally draw 
conclusions from the hypotheses. Although often overlooked, reasoning about the claim itself can lay 
an important foundation to support students in the proof construction process (Cirillo & Herbst, 
2011). 
 
Attention to the Domains of the Claims in Relation to Diagrams 

 
Since students were asked to use their own notation methods, this aspect of the diagrams 

provided insights into how they were attending to the domain of the claims. Of the nine diagrams 
students constructed in Session 7, four of them suggested that students paid limited attention to the 
domain of the claims either in the type of quadrilateral they drew, or in their selected notation method. 
In contrast, only one of the nine diagrams constructed in Session 8 contained specific notation that 
did not encompass all objects within its domain. For instance, Lauren, Megan, and Wilson first labeled 
the angles of their parallelogram 100º and 80º when constructing a diagram for the statement, “If a 
quadrilateral is a parallelogram, then the measures of the angles on the same side of the shape add to 
180 degrees.” When asked if those were the only angle measurements for a parallelogram, Wilson 
replied, “I don’t know, those probably don’t even, they add to 180 I know that, but those probably 
aren’t the exact measurements you know.” Even though this group originally labeled their angles with 
specific measurements, Wilson’s justification suggests that he had chosen the angle measurements 
arbitrarily and had not based them on the actual measurements in their diagram. As a result of the 
TR’s question, Megan proposed changing the labels to “A, A, B, B” and Wilson suggested adding the 
equation “A + B = 180” (Figure 3). Note that their small-group conversation did not reveal any 
evidence that they intended their diagram to be a rhombus instead of a parallelogram (Wilson: “just 
draw a parallelogram…just one that looks nice.”). At the end of Session 7, both Megan and Wilson 
stated during the whole-class conversation that they preferred the use of variables to notate the sides 
of the rectangle because variables were “more generic.”  
 
Figure 3 
 
Lauren, Megan, and Wilson’s Revised Diagram for the Theorem, “If a Quadrilateral is a Parallelogram, then the 
Measures of the Angles on the Same Side of the Shape Add to 180 Degrees.” 
 

 
 

Arin, Brian, and Sadie’s diagram for the same statement consisted of a general parallelogram; 
however, their decision to label the angles as “acute” and “obtuse”, omitting right angles, made the 
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notation less general than the prior group’s use of variables (Figure 4). After being asked if the specific 
angles of parallelograms would always be acute and obtuse as they had labeled them, Arin replied “no, 
it could change. Like if the lines were drawn [in the opposite direction], then this [acute] angle would 
be obtuse.” In response to this exchange, Sadie drew a second, smaller diagram containing different 
angle labels (Figure 4). Although the constructed parallelogram is generic, their choice to label the 
angles as obtuse or acute could result in a corresponding mathematical argument that makes 
assumptions about the angles that are not true for all cases (e.g., the upper left angle is acute). Sadie’s 
decision highlights one of the challenges of constructing diagrams for general statements: namely, that 
it is impossible to construct a diagram that has the features of all possible shapes.  

At the beginning of the constructing diagrams task, there was limited evidence that students 
were attending to the domain of the claims. However, their attention to the domain of the claim 
increased after the TR questioned groups whether their diagram applied to all possible shapes. At the 
end of Session 8, students appeared to have a greater awareness of the different ways that diagrams 
could be drawn to represent general claims. In a written reflection, Amanda explained that “it is okay 
that the diagrams didn’t look the same because not all shapes may look the same, but they still fit the 
requirements to be that shape.” Amanda and others recognized that diagrams can vary in their 
appearance so long as they contain all of the features specific to the shape mentioned in the general 
claim. Students’ use of their own notation methods when labeling diagrams for general claims allowed 
for greater insight into their attention to the generality of the claims and highlighted the challenge 
students can face in constructing a single diagram to represent a class of objects. 
 
Figure 4 
 
Arin, Sadie, and Brian’s Diagram for the Theorem, “If a Quadrilateral is a Parallelogram, then the Measures of the 
Angles on the Same Side of the Shape Add to 180 Degrees.” 
 

 
 
Proving Similar Polygon Conjectures Task 
 
Varied Opportunities for Reasoning-and-Proving 

 
The proving similar polygon conjectures task, as set up by the TR in Session 11, provided 

opportunities for students to pose conjectures about certain polygons that might be similar (e.g., “all 
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squares are similar”), investigate the validity of their conjectures, either construct a proof or find a 
counterexample, construct a diagram to accompany their argument, evaluate their peers’ arguments, 
and revise their argument based on peer feedback. In addition to engaging in all of the reasoning-and-
proving activities set forth in the task, some students also constructed non-proof rationales and posed 
a revised conjecture while evaluating their peers’ arguments.  

To illustrate the different reasoning-and-proving opportunities embedded within this task, we 
describe the original argument constructed by Group 1 (Arin, Brian, and Sadie), the feedback given to 
Group 1 by Group 2 (Megan, Wilson, and Lauren) and Group 3 (Clay, Amanda, Heather, and Lexi), 
and then the revisions Group 1 made to their argument in response to the provided feedback (see 
Appendix B for final work). Group 1 worked on the claim that all squares are similar. Group 1’s 
original argument included a diagram consisting of two different-sized squares with no notation on 
the sides and the angles labeled with the variables A, B, C, and D. Their written argument stated: “If 
all of the angles on a square are 90 degree angles, then they are the same. If all sides have the same 
measurements, then they will be proportional.” Note that each sentence in their argument addressed 
one component of the definition for similar polygons. However, they did not justify how they knew 
the sides would be proportional or explicitly mention the definition of similar polygons or squares. 

When evaluating the argument written by Group 1, Megan, Wilson, and Lauren focused on 
the way the group had chosen to label their diagram.  
 

Megan: I think that they should put…like, if they’re going to do like letters then there 
should be ones on the sides too because that’s, like, what makes it a square. 

Wilson: I think they should all be (unintelligible), I don’t think they should be A, B, C, 
D, I think it should be A, A, A, A cause they’re all the same angle. 

 
Notice that both Megan and Wilson provided a non-proof rationale (e.g., “they’re all the same angle”) 
to justify their proposed revisions. After a discussion with the TR, they concluded that the angles 
could be labeled with 90° instead of a variable. This groups’ final feedback included a revised diagram 
with the angles all labeled 90° along with the statement, “If the angles are the same, the side 
measurements will be proportional.” Their feedback assumed a relationship between congruent angles 
and proportional sides, however it had not yet been discussed how to demonstrate that the sides of 
squares were proportional for all cases. 

Clay, Amanda, Heather, and Lexi (Group 3) provided feedback by underlining Group 1’s use 
of the words “same” and “proportional” at the end of each sentence and then writing, “We’re not 
trying to prove that they are proportional, but that they are similar.” This critique suggests that they 
may not have recognized that each sentence in the original argument referred to one of the 
components of the definition for similar polygons. Nonetheless, it highlighted the need for Group 1 
to use more precise language in their original argument or to more clearly lay out the broad goals of 
their argument. During the revision process, Group 1 tweaked the first sentence to clarify that the 
angles are the same in response to Group 3’s feedback. They also revised their angle notation in the 
diagram and added labels to the sides of the two squares in response to Group 2’s feedback. 

In the proving similar polygons task, students had the opportunity to engage in a variety of 
reasoning-and-proving activities as they developed and honed their understanding of proof. Although 
none of the groups produced arguments that contained all of the elements and formatting of a 
traditional proof (which, after all, was not expected), their work on the task was notable given that this 
was their first formal experience constructing a proof. Students were actively involved in the decision-
making during this task, evaluated each other’s feedback, and decided whether they wanted to 
incorporate it into their revised argument. The directions within this task not only allowed students to 
experience varied reasoning-and-proving in a connected, authentic way, but also allowed students to 
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enact their role as a member of the proving community through revising their argument based on peer 
feedback.  
 
Attending to the Domain of the Claim in Varied and Complex Ways 
 

When proving that all squares are similar to one another, all three groups wrote arguments 
containing justifications that reflected an attention to the domain of the claim. Additionally, two of 
the three groups constructed a single diagram to accompany their argument that used variables to label 
the sides and, in one group, the angles as well. After completing their initial written argument, the 
remaining group (Heather, Amanda, Lexi, and Clay) chose to “draw another square”, which they 
labeled with specific side lengths, “to show that they all work”. It is not clear from this group’s 
discussion whether they saw the specific diagrams as part of their core mathematical argument or as 
further evidence to convince someone the claim was true. Finally, all three groups also demonstrated 
understanding that a single counterexample proved a general claim was false for the right triangle 
conjecture.  

Students’ arguments for the (false) claim that all rhombuses are similar revealed more variation 
in attention to the domain of the claims, in part because they were completed individually during the 
final interview instead of within their small groups. Six of the ten students demonstrated 
understanding of the domain of the claim, “all rhombuses are similar”, through their use of a single 
counterexample or class of counterexamples to prove the claim was false. Specifically, they argued the 
claim was false by giving a specific counterexample (Amanda, Lauren, and Sadie), mentioning that the 
angles of a rhombus “have no set rule” (Megan), or providing a class of counterexamples with squares 
and non-square rhombuses (Lexi and Wilson). For example, Wilson’s written argument is shown 
below: 
 

By definition a rhombus is a polygon that has 4 equal sides that the angles add up to 360°. 
By definition a square has 4 90 degree angles with sides that are equal. A rhombus doesn’t 
have to have 90° angles and a square does. Because of this 2 rhombuses don’t necessarily 
have to be similar.  

 
Wilson’s argument demonstrates understanding that in order for the claim to be true, it must be true 
for all possible cases even though he did not disprove the claim with just a single counterexample. 
Whether by providing a single counterexample, or a class of counterexamples, to prove the claim was 
false, the six students demonstrated attention to the fact that the claim must be true for all rhombuses 
in order to be considered true. 

The arguments produced by the remaining four students (Arin, Brian, Clay, and Heather), who 
initially thought the claim “all rhombuses are similar” was true, also demonstrated some attention to 
the domain of the claim. However, the way they conceived of the claim resulted in them considering 
only a subset of rhombuses. Arin, Brian, and Clay’s arguments assumed that the angle measurements 
would stay the same as the sides proportionally changed, while Heather only mentioned proportional 
side lengths (not equal angle measures) when stating the definition of similar polygons. In order to 
illustrate how Arin, Brian, and Clay were thinking about the claim, we focus on Arin’s argument, 
shown in Figure 5.  

Arin appropriately defined a rhombus and stated the definition of similar polygons, but 
incorrectly claimed, “When all of the side lengths will be the same, so will the angle measurements.” 
She verbally justified this claim saying, “if the shape’s proportional, then it’ll just… it’ll like make the, 
um, the shapes more bigger, but the angle measurements will stay the same because the shape isn’t 
changing its shape, it’s just changing its size.” This additional information suggests that she viewed 
one of the rhombuses as a dilation of the other. Instead of thinking about the conjecture as selecting 
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two arbitrary rhombuses and then determining if they were similar, she appeared to be thinking about 
the task as selecting one arbitrary rhombus and then dilating it to create the second rhombus. When 
asked whether rhombuses have particular angle measurements, Arin stated that the opposite angles 
“have to be the same, but other than that, they don’t have to be specific.” This reply further confirms 
our interpretation that her belief in the claim’s validity was based on her understanding of similarity 
and the domain of the conjecture. Of the four students who initially thought the claim was true, Arin, 
Brian, and Clay appeared to have at least a surface-level understanding of the definition of similar 
polygons (i.e., could state the definition), which suggests that their initial belief that the claim was true 
was not due to a lack of content knowledge. Instead, their initial assertion that rhombuses are all 
similar appeared to be rooted in how they were interpreting the domain of the mathematical claim, 
that is, how they brought to mind “all” rhombuses. Overall, students’ work on the similar rhombuses 
proof tasks highlighted the abstract level of thinking needed to fully grasp what it means to prove that  
a general claim is always true and raises the question of how to support students in developing such  
understanding. We next discuss some of these points. 
 
Figure 5 
 
Arin’s Written Argument for the Similar Rhombuses Proof Task 
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Discussion 
 

By examining the enactment of general claim proof tasks with respect to students’ 
opportunities to (1) engage in reasoning-and-proving activity and (2) consider the domain of the 
claims, this study extends Otten, Gilbertson et al.’s (2014) focus on the nature of mathematical 
statements found in reasoning-and-proving tasks in Geometry textbooks. With respect to the 
opportunities for reasoning-and-proving (RQ1), we found that the general proof tasks provided 
opportunities for students to actively engage in all of the intended reasoning-and-proving activities. 
Additionally, students also went beyond the intended activities by making conjectures/claims, posing 
counterexamples in response to a peer’s claim, and refining a peer’s conjecture during the tessellation 
tasks; drawing conclusions and making sense of the claims during the constructing diagrams task; and 
providing non-proof rationales and revising a conjecture during the proving similar polygons task. 
The tessellation task and proving similar polygons task in particular provided opportunities for 
students to engage in reasoning-and-proving in an integrated manner, mirroring the intent behind the 
hyphenated term (G. J. Stylianides, 2008). Across the three tasks, these students who were new to 
proof engaged in all of the reasoning-and-proving activity identified in Otten, Gilbertson et al.’s (2014) 
framework, including multiple opportunities to construct a proof. Consequently, these general proof 
tasks provided students with opportunities to develop their understanding of proof by engaging in the 
reasoning-and-proving process, something that Otten, Males, and Gilbertson (2014) noted was lacking 
within the introduction to proof chapters of many U.S. Geometry textbooks.  

Although not a focus of the present study, opportunities for additional, unplanned reasoning-
and-proving activity surfaced in part due to several factors, including the use of a launch-explore-
summarize lesson structure (e.g., Lampert, 2001; Stylianou, 2010), which engendered opportunities 
for students to make sense of the tasks in small groups before being given more formal instruction. 
There was also a sense of at least partially shared authority, with the expectation that students consider 
and respond to their peers’ ideas (e.g., the whole-class conversation in the tessellation task), rather 
than looking to the TR for validation. In the case of the tessellation tasks, the additional reasoning-
and-proving occurred as students worked to make sense of two general claims (“do all quadrilaterals 
tessellate?” and “do all regular polygons tessellate?”) that had parallel structure (i.e., both investigated 
whether a particular class of shapes would tessellate) but differed in validity. When considered 
together, the two claims motivated a need for a non-empirical justification that explained why only 
some polygons tessellate. The factors we have proposed that may have positively influenced students’ 
opportunities for reasoning-and-proving align with the idea that opportunities to learn extend beyond 
the specific tasks given to students. Other factors have also been found to be important, such as “the 
emphasis teachers place on different learning goals and different topics, […], the kinds of questions 
they ask and the responses they accept, [and] the nature of the discussions they lead” (Hiebert & 
Grouws, 2007, p. 379). Given that prior classroom studies have documented instances where teachers 
began by modeling the proof construction process and retained most of the mathematical authority 
(e.g., Harel & Rabin, 2010; Martin & McCrone, 2003; Otten et al., 2017), future studies could analyze 
specific instructional features that facilitate opportunities for students to engage in reasoning-and-
proving that extends beyond the opportunities within the original task. 
 Analysis of students’ attention to the domain of the claims during the three tasks (RQ2) 
highlighted the complexity of addressing generality and the different ways it impacts the reasoning-
and-proving process. Specifically, attempting to consider all possible cases when investigating the 
validity of the claim (tessellation tasks) required a different shift in attention than depicting the 
generality of a claim when constructing and notating a diagram (constructing diagrams task) or proving 
a claim to be true for all possible cases (proving similar polygons task). In all three cases, it seemed to 
be important that the claims themselves were general, as opposed to an introduction-to-proof unit 
that presents simple, particular proofs (e.g., “write down the justifications for how we know that this 
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segment of the given diagram is congruent to this other segment”). Although the general proof tasks 
afforded certain opportunities, as discussed above, they worked in concert with other factors such as 
the TR questions and the interactive dynamics. Moreover, the transfer of any attention to generality 
is not guaranteed, evidenced by the varied attention to generality during the similar rhombus task (final 
interview) despite everyone attending to generality during the similar squares task (Session 11).  

We also wish to comment on the attention to the domain of claims over time. Towards the 
end of the study, students’ work began reflecting an increased attention to the domain of the claims. 
We viewed this as a positive development as this was students’ first formal introduction to proving. 
Yet the attention to the domain near the end of the study was nuanced. Whereas all student work 
demonstrated at least some attention to the domain of the claims in the proving similar polygons task, 
some students interpreted the claims in a way that only encompassed a subset of cases (e.g., Arin’s 
argument in Figure 5). In the case of Arin, subsequent conversation suggested that her initial 
(incorrect) belief that all rhombuses were similar was not a result of a lack of content knowledge, but 
rather how she was thinking about the claim itself. Although Arin’s work does not discount the role 
that content knowledge and proof skills play in understanding why some students construct empirical 
arguments for general claims, it does reinforce the particular difficulties students face in interpreting 
diagrams as figural concepts (Fischbein, 1993) and the need to better understand how students 
interpret the domain of mathematical claims (Mason, 2019).  

Given this study’s small sample size involving accelerated students and the explicit emphasis 
placed on the domain of the claim by the TR, more research is needed to ascertain the extent to which 
a wider range of students recognize the domain of the claim while engaging in reasoning-and-proving 
tasks. It is possible that students’ prior successes in mathematics and their involvement in the 
accelerated mathematics program may be a form of selection bias contributing to the findings of 
additional, unplanned forms of reasoning-and-proving. That said, the accelerated program had only 
focused on algebraic topics at the time of the study, so the students’ content knowledge was likely not 
significantly different from other students at the school as they began studying secondary geometry. 
Future research should involve students who were taught using a more traditional curriculum where 
particular claims are frequently used (Otten, Gilbertson et al., 2014) and the domain of the claim is 
often obscured through the use of separate “given” and “to prove” statements (Chazan, 1993).  

How should we view students’ work on the three tasks, given that they were completed as 
they were first being introduced to proof? Viewing students’ work in the teaching experiment solely 
through the lens of the enacted opportunities to learn (RQ 1) paints a rosy but incomplete picture of 
their developed understanding of proof and ability to construct deductive arguments. On the one 
hand, there was evidence of careful attention to the generality of claims in nearly all of students’ 
constructed arguments during the proving similar polygon conjectures task and on proof tasks given 
in the final interview (Conner, K.A., 2018). On the other hand, findings on students’ attention to the 
domain of the claims (RQ 2) portrayed a more nuanced picture, in which students demonstrated 
attention to the domain of the claims in some instances, but not in others. In both the constructing 
diagrams task and proving similar polygons conjectures task, at least one group used specific numbers 
when labeling aspects of their diagram that can vary, even in instances when they explicitly referenced 
the domain of the claim in their language. One way to interpret students’ inconsistent shifts in 
attention is to conclude that they developed understanding of generality at a surface level (i.e., they 
recognized the types of justifications that were appropriate and the need to prove the claim for all 
possible cases), but had not fully become aware of other aspects of proof that are impacted by it. 
Nevertheless, for an introductory unit, the fact that general proof tasks helped set the stage for a focus 
on the domain of claims and students began to discuss those domains, even if imperfectly, it may be 
a sufficient foundation on which to build. As the field continues to explore ways to improve the 
teaching and learning of proof, more research is needed on ways to support shifts in attention with 
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regard to the level of generality indicated within a mathematical claim, and its impact in the reasoning-
and-proving process. 
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Appendix A 

Overview of the Instructional Sequence 
 
Session Classroom Activities Rationale for Tasks 

1 

“Do all quadrilaterals tessellate?” Allowed for testing of specific cases where the 
cases seem unique due to differences in the 
diagrams. The task proof allowed for 
explanations of why it was always true. 

2 

Create step-by-step directions that explain how 
to tessellate any quadrilateral. 

Aimed to facilitate systematic work and the 
identification of cross-cutting features of 
quadrilaterals that result in the figure 
tessellating. 

3 

“Do all regular polygons tessellate?”  
 
“Do you still think that all quadrilaterals 
tessellate? If no, explain why. If yes, is there 
something special about quadrilaterals that 
make it so that they will always tessellate?” 

First question served as a pivotal 
counterexample (Stylianides & Stylianides, 
2009) to cast doubt on their prior confidence 
that all quadrilaterals tessellate based on 
checking specific cases. The second question 
emphasized that a claim must be true for all 
cases and motivated the determination why a 
polygon will or will not tessellate.  

4 
Summary of first three sessions; TR explained 
why all quadrilaterals, but not all regular 
polygons, tessellate. 

Introduced the explanatory feature of proofs. 

5 
Circle and Spots problem and Monstrous 
Counterexample (Stylianides & Stylianides, 
2009)  

Aimed to cast doubt on the idea of using 
examples to determine whether a statement is 
always true. 

6 

Introduce generic examples through 
exploration of a number trick: 
https://nrich.maths.org/2280. Next, students 
explored and proved: “9*11 equals 1 less 
than102, 3*5 equals 1 less than 42. Will this 
pattern always be the case?” 

Aimed to support students in interpreting and 
using geometric diagrams where they only 
attended to the features that extended across 
all cases within the domain. The second task 
aimed to facilitate interpretation and use of 
variables as varying quantities.  

7 Students constructed diagrams for six 
quadrilateral theorems 

Introduced conditional statements, notation 
methods, and what can/cannot be assumed 
true based on a geometric diagram. 8 

9 Develop definition of similar polygons; based 
on sequence in Kobiela and Lehrer (2015) 

Established necessary mathematical content 
knowledge for Sessions 11 and 12. 

10 

11 
Students posed conjectures of the form “all 
___ are similar”, drafted an argument for 
squares, critiqued peer arguments, revised their 

Developed understanding of proof by 
engaging in multiple aspects of the reasoning-
and-proving process in small groups. The 

https://nrich.maths.org/2280
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12 
arguments, then discussed proof as a whole 
class. Next, students investigated remaining 
claims from previous sessions. 

second session was used to introduce specific 
characteristics of proofs.  

13 

Students individually engaged in the reasoning-
and-proving process (described in sessions 11-
12) for the exterior angle theorem. Task was 
posed using two examples, followed by the 
question “is this a coincidence?” 

Developed understanding of proof by 
engaging in the reasoning-and-proving process. 
Individual written work was used as a 
formative assessment. 

14 
Students developed shared criteria for features 
of “good proofs”; task based on Boyle and 
colleagues (2015). 

Assessed conceptions of proofs and reflected 
on key ideas from the teaching experiment. 

 
  



70     CONNER & OTTEN 

Appendix B 

Brian, Arin, and Sadie’s (Group 1) revised argument for the conjecture, “all squares are similar”, 
including the feedback given by Group 2 (bottom) and Group 3 (top right).  
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ABSTRACT 
 
We have argued that science in general, and scientific inquiry in particular, is a human activity and 
that current models to describe science (either as Scientific Method or as a Body of Knowledge) 
tend to underestimate the significance of human beings in the phenomenon. Our earlier paper 
(Bevins & Price, 2016) suggests a model to correct this imbalance which we call 3-Dimensional 
science. The current paper used the Storyline Method to look at the lived experiences of nine science 
researchers and educators for evidence of our third dimension (Psychological Energy). Results 
suggest that the key features of our third dimension are present, namely: a degree of autonomy, a 
sense of competence, and a relatedness to significant others. We suggest this further strengthens the 
argument for a more holistic approach to science education which celebrates these issues rather 
than simply a technical analysis of isolated teaching techniques. 
 

 
Keywords: inquiry, nature of science, scientific method, science education 
 

Introduction 
 
Science is broadly-defined in terms of theories, facts and practises. The theories and facts can 

be described as a single dimension of science which we call Dimension 1 (D1). D1 contains facts (e.g. 
the melting point of sodium, the atomic weight of hydrogen) and potentially complex, ideally general, 
theories (e.g. natural selection, kinetic theory) that organise these into productive epistemic structures. 
Even though the exact contents of D1 are open to discussion there is general agreement, for example, 
that the melting point of sodium is ‘in’ while the names of the Kings and Queens of England is ‘out’. 
Over the last 50 years, the growth in D1 has been significant with whole disciplines being created (e.g. 
the nature and management of genes). This growth in D1 is delivered and regulated by a set of practises 
that we describe as Dimension 2 (D2). D2 includes rules concerning the collection, and analysis of, 
evidence by scientific method typically involving generation of predictions and hypotheses which are 
tested through experiments. Increasingly D2 includes skills like networking and communication 
required to operate within the modern, global scientific community.  In summary, D2 includes 
enabling skills (e.g. networking, communication), inquiry skills (e.g. control of variables) and 
mechanical skills (proficiency in specific laboratory procedures). The dimensions, although related, 
vary independently. It is possible to have a strong D1 (you might know lots of facts and theories) but 
be deficient in D2 (weak communication skills). Similarly, a strong grasp of the key skills of D2 may 
not always indicate strong grounding in D1. 
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Much of the discussion in science education has concerned itself, not always helpfully, with 
the emphasis placed on these two dimensions with ‘knowledge-rich’ tradition typically favouring D1 
and the adherents of a more process-led approach emphasising D2 (Hmelo-Silver et al., 2007; 
Kirshner et al., 2006). However, even if the perfect balance could be agreed, the two-dimensional 
model only covers science as a disembodied, crystallised entity. It produces a portrait of existing 
science knowledge alongside a statement of the rules of engagement rather than reflecting science as 
it is practised across the world. We have argued (Bevins & Price, 2016) that a better model of science 
requires a third dimension. We call this improved model three-dimensional science or 3D science.  
 
Three-dimensional Science 
 
We have described our model for three-dimensional science in detail elsewhere (Bevins & Price, 2016) 
and so provide only a summary here. 3D science includes three dimensions; 
 
• D1 A body of knowledge: this informs scientists’ thinking about phenomena and can generate 

questions and suggestions for inquiry. 
• D2 Evidence-management procedures: these ensure evidence is generated reliably, interpreted 

with reference to the underlying ideas and the observed data, and communicated appropriately. 
• D3 Psychological energy: this provides the energy to create and manage a scientific inquiry. 
 

These dimensions have different natures and characteristics and do not link conveniently to 
each other in a simple sequence. One does not ‘lead’ to the other nor ‘depend’ on another in a strict 
linear sense.  All are interrelated but only to the extent that they belong to a system that requires their 
presence. We have called this model a ‘fruit salad’ model in that the dimensions are as related to each 
other as the individual fruits in a fruit salad. They are all essential to the makeup of the salad, but 
apples are not like bananas and pineapples do not lead to oranges or grapes. The system is more than 
merely the sum of its parts even though the parts might be externally still recognisable. Figure 1 
provides a visual summary of the components of our 3D model. 
 
Understanding D3 
 

Dimension 3 (D3) of our model provides the energy for scientists to operate the machinery 
of D1 and D2 to drive the further development of the scientific domain. A useful analogy might be 
to think of D1 as the written-down steps of a ballet, D2 as the ability to complete them through 
repeated, often formal, exercises while D3 is a feature of the dancers themselves that convert these 
written steps and practised movements into an actual performance that has meaning and integrity. 
Without the dancers there is no dance. This sees D3 as a feature of the active scientist, their 
motivation, commitment and sense of purpose, which drives their engagement. D3 varies from low 
engagement with limited personal purpose (low energy), through to a clear personal purpose and 
engagement (high energy). We feel that the 3D model offers a number of advantages when thinking 
of scientific activity and we describe these in the discussion section that follows. 
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Figure 1 
 
The 3D Model of Science 

 
 
Self Determination Theory’s (SDT) and the Third Dimension 
 

We draw on Self Determination Theory’s (SDT) treatment of motivation (Deci & Ryan, 2012) 
to inform our understanding of the nature of D3. As Deci and Ryan (2006) explain: “it (the motivation 
to act) must be endorsed by the self, fully identified with and “owned”’ (p. 1561). The endorsement 
requires a degree of autonomy in the actor since something that is forced upon them cannot be 
‘owned’ - it is, by definition, an imposition ‘owned’ by an external. Similarly, a person should also feel 
a degree of competence in the task; in effect the task is appropriate for them and their skills - there is 
a ‘good fit’ between act and actor. Finally, the task must in some way be valued by others who are 
significant for the actor. This is the notion of relatedness central to SDT’s understanding of 
motivation. 
 
Why Another Dimension? 

 
We understand that our use of the ‘third dimension’ can cause confusion as we are not the 

first to use the term. The Next Generation Science System (NGSS Lead States, 2013) in the United 
States talks explicitly of ‘three dimensional science’, although they mean a particular subset of generally 
applicable concepts like ‘patterns’, ‘cause and effect’, ‘structure and function’ or ‘stability and change’ 
by the third dimension. These are valuable ideas that share some similarities with the concepts of 
evidence (Gott et al., 2008) and identifying a separate ‘third dimension’ for these concepts is a useful 
way to draw attention to them. However, our model assumes they fit more naturally in Dimension 1 
where they can impact and inform some of the activities in Dimension 2. 

It is important to show how our third dimension links into existing discussion around the 
'Nature of Science' (NoS). The understanding of the NoS is not fixed, showing a shift from the notion 
of science as an external, logical process of justification, producing objective, value-free knowledge to 
the recognition that all observations are, to some extent, theory-laden (Khalick & Lederman, 2000). 
An understanding of the NoS is an essential part of science education, particularly with relation to the 
development of science literacy (Archer & DeWitt, 2016) for citizens and the ability for them to engage 
with important socio-economic issues raised by technological advances (Tala & Vesterinen, 2015). A 
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review of the elements of NoS in teacher education courses is shown in Table 1 ( Noushin et al., 
2021). 
 
Table 1 
 
Elements of the Nature of Science (NOS) Covered in the Teacher Education Programs 
 
 Example of NoS Elements covered in the teacher education programs 

1 Scientific knowledge is based on empirical evidence. 

2 Society and culture influence each other with respect to science. 

3 Scientific investigations are influenced by theory and by scientists’ backgrounds, and therefore, 
subjectivity is part of science. 

4 Creativity plays an important role throughout scientific investigations. 

5 Both observation and inference are important in the construction of scientific knowledge.  

6 Scientific knowledge is durable yet tentative.  

7 Science uses shared methods and there is not a single scientific method. 

8 Scientific theories and laws serve very different and not interchangeable functions. 

9 A scientist works within the scientific community to evaluate and contemplate the work of other 
scientists.  

10 The evidential part of science is strongly advanced by the technology available at the time. 

11 Science and religion are different ways of knowing. 

 
While the NoS elements may not concern themselves with the melting point of sodium or the 

theory of evolution, they are claims based on evidence in the same way as Newton’s claim that for 
every action there is an equal and opposite reaction. They are a valuable part of science and science 
education but they do not require a new dimension - they can be accommodated with Dimension 1 
in our model. 

Reviewing issues concerned with the teaching of the NoS, Bell (2009) identifies three domains 
which contribute to the creation of science, these are a body of knowledge (equivalent to our D1), a 
set of procedures (equivalent to our D2) and what he calls ‘a way of knowing’. The ‘way of knowing’ 
includes a set of statements (e.g. ‘Scientific knowledge is based on evidence’, ‘Creativity plays an 
important part in science’ which help to describe science as it is practised). These statements give rise 
to a set of what he calls ‘key concepts’ (e.g. the tentative nature of scientific knowledge). Taken 
alongside the other domains these concepts describe the NoS. Again, these can be sufficiently 
described in terms of concepts and procedures, although these concepts and procedures may not, at 
first glance, appear in traditional content lists for science courses or be unique to science. 
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A Testable Claim for D3 
 
In comparison to NGSS’ third dimension or even the material on the NoS, our D 3 is not a 

selection of valuable concepts, insights or attitudes or even habits of mind (Gauld, 2005). It draws on 
many of the concepts mentioned in the discussion of the NoS and will be manifested in some of the 
activities that fit easily into D2. Our D3 is concerned with the psychological energy to drive the 
processes of D2 which generate, and apply, the concepts of D1. In physics education, energy is a 
notoriously difficult concept to teach, perhaps because the many ‘forms’ of energy (e.g. sound, light, 
heat) are not energy itself but are the effects energy creates as it transfers within and between systems. 
The energy itself is invisible. In the same way, our psychological energy is invisible but manifests in 
activity, and in the context of science this means scientific research. Again, as in physics lessons, a key 
issue for energy is where it comes from and what happens if the supply runs out? The energy that 
resides in D3 comes from the individual scientist and we explain below how Self Determination 
Theory has helped to inform our thinking on this. A collapse in energy supply (D3) means scientific 
research stops; the body of knowledge (D1) remains intact but static, the skills and procedures (D2) 
pristine, but unused.  

So, if D3 is both real and necessary for a complete description of science, we should be able 
to find evidence of it in the way scientists describe their scientific activities. Our model predicts that 
when there is clear evidence of all three dimensions present the scientist should be engaging in work 
that is demanding but rewarding, objectively significant and personally satisfying. A gap in any of our 
three dimensions should inhibit this productivity. This provides us with a clear testable claim which 
we explore in our data collection: if people are actively engaging in scientific activity there should be 
some evidence of their D3 needs being met. 
This claim generates two related research questions: 
 

● Can we find any evidence of D3 needs being met in scientists’ accounts of their educational 
careers and professional lives? 

● Is there any suggestion that D3 is not merely helpful but essential, i.e. when D1 and D2 needs 
are met but D3 is absent does the science slow down or stop? 

 
To explore the experiences of scientists over their lives and to look for evidence of the three 

dimensions we developed an approach using Storyline method (Beijaard et al., 1999) 
 

Methods 
 

We used the storyline method (Beijaard et al., 1999) to stimulate and frame conversations with 
practising scientists.  The participants were given a chart containing a pair of axes with the present day 
fixed at the far right of the x-axis. Each participant was then asked to score their current level of 
‘thinking and behaviour as a scientist’ and mark it on the line labelled ‘Today’. They were then asked 
to draw a line backwards through time showing rises or falls in their scientific activity. Labels could 
be added to the x-axis to identify significant events or periods. Figure 2 shows a typical storyline plot. 

Once participants completed their storylines, we engaged them in a conversation to explore 
reasons for these rises or falls. This focus on their own story places the participants in a relatively 
powerful position and, from experience, they are both motivated and skilled in their analysis as they 
explore their understanding of what behaving as a scientist means to them.   
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Figure 2 
 
An Exemplar Completed Storyline Form 
 

 
 

Data Analysis 
 

Each conversation was audio recorded and transcribed.  We used thematic analysis (Braun & 
Clarke, 2006) to identify patterns and themes within our transcriptions.  Themes represent something 
important about the data related to our original research focus (e.g. the factors impinging on their lives 
as scientists) and provide some level of meaning (e.g. obtaining research funding, designing an 
experiment).  The three dimensions became our superordinate categories in which we housed themes.  
The transcribed conversations were read and re-read as we developed notes prior to agreeing on 
themes to be placed in each superordinate category.  Throughout this process we engaged in reflective 
discussions to ensure the specifics of each theme appropriately represented a feature from one of the 
dimensions.  This ‘theoretical’ approach framed our analysis in contrast to a purely inductive approach 
more typical of Grounded Theory (Charmaz & Belgrave, 2015).  Thus, by asking the participants to 
explain what they meant when they said they were ‘acting as scientists’ we could analyse their 
perceptions of the nature of science which in turn, allowed us to identify references to the three 
dimensions that we claim our 3D model of science presents (see Table 2). 
 
Sample 
 

We identified eight scientists (three female, five male) from India and the UK, working at 
university level, who had experience as practising scientists and educators.  The participants formed a 
convenience sample (Etikan et al., 2016) and were identified through ongoing project links. 
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Table 2 
 
Indicators of the Presence of the Dimensions 
 

D1: Scientific domain 
knowledge 

D2: Evidence-management 
procedures 

D3: Psychological energy 

References to scientific 
domain knowledge (D1’s 
facts and theories). 
Conversations should also 
emphasise increasing 
levels of scientific 
understanding (e.g. new 
subjects, higher levels of 
treatment).  

References to practical work 
(mechanical skills are part of 
D2) but also the notion of 
designing experiments, the 
‘control of variables strategy’ 
(Schwichow et al., 2016) 
which appears in D2 as 
inquiry skills and working in 
teams (D2’s enabling skills). 

References to having a degree of 
control over the work both in 
terms of its purpose and 
implementation (autonomy). This 
offers the option to engage and 
develop it because it is in harmony 
with the scientists’ views, values, 
and perceived abilities 
(competence). There will also be 
references to significant others who 
have contributed to the scientists’ 
choices (relatedness). 

 
Ethics 
 

Each participant was briefed about the research purpose, potential outcome and 
dissemination. They were informed that all data would be anonymised and stored on an encrypted 
drive within the university. All participants were made aware of their right to withdraw from the 
research at any point and that their data would be destroyed immediately. Consent forms were 
gathered from all. 
 

Findings 
 
This section describes the interviewee’s understanding of the nature of scientific endeavour 

based on data gathered through conversations and storyline graphs. Background information not 
directly related to science (e.g. family history, strong peer group friendships) from the interviews is 
included where relevant. Reproductions of the storylines drawn are included with markers [numbers 
in square brackets] to indicate where during the interview a particular point was emphasised. We also 
offer specific quotes with the relevant timecode. The data are presented by individual conversation 
and general observations covered in the discussion section which follows. 
 
Sc1, Female, Biotechnologist 
 

Much of Sc1’s conversation concerned her experience of learning and little was positive, the 
first dip on her Storyline [1] was as she entered college (age 18), where science was being taught in a 
very didactic manner:  

basic biology was very good but mode of learning was not … (Sc1/ 9:52) 
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Figure 3 
 
Sc1’s Completed Storyline Form 

Afterwards she joined a new course that involved much more practical work and decision-making by 
the students [2]. The references to ‘practicals’ and ‘we were doing it ourselves’ correspond to D2 while 
her personal involvement in the process (D3) is clearly referenced in her explanation that when they 
made mistakes they felt bad about it: 
 

In our Masters we were given a lot of practicals to do… a lot of exposure to hands-on 
training. The teacher would not demonstrate the practical…we were doing it we were 
making mistakes and feeling bad about it. (Sc1/12:50) 
 
The centrality of practical competence (D2) was emphasised in talk of ‘good hands’ (practical 

skills) which she enjoyed (D3): 
 
In scientific research people say that she or he has very good hands … technical hands … so 
a lot of technical skills were imparted to us … which we enjoyed. (Sc1/13:02) 
 
However, the lab activity began to pale as it became more repetitive and focused around a 

small, technical problem. She explained that she was not happy finding an unknown protein and 
working on that for the next ten years. She talked of work becoming a mundane trudge for more data. 
This disenchantment with the routine of lab work produced a significant fall in her storyline trace [3].  
In these comments we see the effects of a relatively low D3 - Sc1 had felt purposefully involved and 
doing something of substance early on in her career (high D3) but as the work became more mundane 
and repetitive (low D3) it lead to her leaving the profession and moving into a full time teaching role. 
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Sc2, Male, Physicist 
 

Sc2’s obvious warmth when recalling his friendship with other students at his school [1], 
who were also interested in science, resonates with D3’s emphasis on ‘relatedness’. The subsequent 
lack of similar enthusiasts at first degree led to a fall [2] in his feelings of being a scientist: 

 
I was very unhappy with that (no friends who were similarly enthusiastic) … during my BSc 
… even the teaching methodology was more memory-orientated than problem-solving … 
that was very disappointing (Sc2/9:23) 
 

Figure 4 
 
Sc2’s Completed Storyline Form 
 

 
The situation improved dramatically during his MSc [3] where the emphasis was on him 

personally taking the initiative to solve problems - another aspect of D3:  
 
There was no memory-oriented tests it was all problems … so, the teacher will teach you 
concepts and you’ll work on it, try to understand it more on your own and the exams would 
be completely new problems. (Sc2/10:00) 
 
He described his BSc as ‘training to do science’ not ‘doing science’, whereas in his MSc work 

and post as a Project Assistant [4] he was working with new ideas, (D1) exotic materials and lasers 
(D2). There was a strong sense that high levels of domain knowledge at the edge of evolving theory 
(D1) and the use of complex equipment and sophisticated techniques (D2) were essential for his sense 
of ‘being a scientist’ [4].  The peak of this storyline was during his PhD [5] when he had much more 
personal control (D3) over his work. Sc2 reflects the experience of other participants who felt that 
they can only do what many call ‘real science’, in distinction to merely following instructions, when 
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they have control (D3) of their work during their PhD years or when working on a project with a team 
that can make its own decisions. Typically they will also be deploying sophisticated skills (D2) and 
using complex ideas (D1) at this time. 
 
Sc3, Male, Botanist 
 

Sc3 discussed his choice to become a research scientist in terms of finding solutions to ‘help 
society’ [1]. 

 
That was a time when I had to decide if I was going to continue with my higher studies or if 
I was to go for a job. … I decided I could continue and look for certain problems and 
solutions which may help society itself. (Sc3/2:15) 

 
Figure 5 
 
Sc3’s Completed Storyline Form 
 

 
 

He explained scientists as people who find solutions to societal problems - because they are 
able to think systematically and scientifically: 

 
I think it was thinking as a scientist … you have to look at the problems in a scientific 
manner…they can be solved in a better way…in a scientific manner. (Sc3/3:07) 
 
These two anecdotes contain evidence for D2, ‘looking at the problems in a scientific manner’ 

but also show a strong involvement of D3 in talk of doing something to help ‘society itself’. The 
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importance of working in a way that makes a contribution to a range of people (SDT concept of 
relatedness) is strong evidence of the existence of D3, referenced again later in the conversation: 

 
I thought that was necessary for the survival of everyone on this planet because if you do 
not work in a scientific manner the system may collapse. (Sc3/5:15) 
 
Returning to the issue of the gradual rise in his storyline trajectory we asked what was different 

in his ‘scientific thinking’ at 16 years of age and now that he was 20 years older. His response was of 
a gradual increase in knowledge and skills - developing D1 and D2: 

 
I think its the constant learning…because when I was at school I was not exposed to many 
things there…I think its the exposure… how you have been exposed to problem-solving 
capabilities. (Sc3/7:18) 

 
He saw his progress in terms of being more autonomous and more ‘self guided’ (Sc3/11:49) 

and when he added this to his storyline he claimed this extra capability developed during his MPhil 
and subsequent PhD studies. 
 
Sc4, Male, Biologist 
 

Sc4's storyline covered his whole life which gave him a chance to describe the difference 
between knowing ‘how science works’ (D2) and a sense of science as an approach to life in general, 
which he referred to as ‘scientific temperament’: 

 
I am a teacher, I am post-doc who knows how science works. I do know the components 
that some sort of observation is there, then we do have some sort of hypothesis…we do test 
these things, and then we draw some conclusion and theory. (Sc4/6:50) 
 
However, his personal curiosity, and drive to ask questions, which seems more like D3, was 

also active. He makes this clear when he compared his PhD [2] with his preschool life [1], where he 
knew none of the mechanics of scientific method, but felt he was much better at thinking like a 
scientist: 

 
If I compare this phase [2-4] to preschooling or the first five years of my life it was not 
taught to me these are the components of science as such…my observation power was 
more. I was questioning each and everything, no matter what resources were available or not 
but I was testing it right? (Sc4/6:57) 

 
He made this distinction between knowing technique and intrinsic curiosity very clear with the 

statement: “It was not a formulated science but I was doing it.” (Sc4/7:23)  Since Sc4 recognised the 
attitudes of science in himself even prior to school it might have been hoped that when he went to 
school the formal rigour of scientific method would increase his ability and opportunity to think like 
a scientist. In fact, as he explained, this went down dramatically: 

 
When I came to the schooling phase [3] it dropped down tremendously because I was not 
given or provided that autonomy to think or question things….It dropped off because what 
has to be taught was fixed and how it has to be taught was also fixed so there was no 
autonomy for me so I stopped questioning. (Sc4/8:01) 
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Figure 6 
 
Sc4’s Completed Storyline Form 

   
Significantly when Sc4 felt his autonomy (D3) was denied he did not feel he was behaving like 

a scientist. Indeed, much of Sc4’s conversation suggested that science was an attitude of mind, he 
called it a ‘scientific temperament’ which revolved around making observations, asking questions, and 
trying things out without fear of censure in a methodical and organised manner (D2).  His complaint 
about school science was that it offered no chance to question. Here he draws a distinction between 
a technician who follows procedures designed by others and a scientist who has the right (D3) and 
capability to ask novel questions and explore ideas and fields that are personally important to them: 

 
If you don’t have the capability of observing, questioning, and analysing I don’t think that 
person can be a scientist. There’s a difference between a technician and a scientist I think. 
(Sc4/13:24) 
 
During the last few minutes of the conversation he remarked about the slight fall in his 

scientific research as he took on more responsibility for teaching [4] - a common remark amongst 
other participants indicating a degree of loss of control of his personal timetable (D3).  
 
Sc5, Male, Botanist 
 

Sc5 started his conversation with his personal history: 
 

My parents are involved in agriculture…he (his father) would always tell me ‘mangoes come 
this season’ and I would ask him ‘why? Are there mangoes which come in all seasons?'  So 
this type of behaviour was there when I was young [1]. So he would get different types of 
mango plants and say ‘Let’s see which one comes first’ and then the first ones would not be 
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tasty … that would make me wonder why these ones were not tasty but after rain they get 
tastier. (Sc5/5:00) 

 
Figure 7 
 
Sc5’s Completed Storyline Form 
 

 
Sc5 equated inquiry with curiosity and asking questions - with a real purpose behind the 

questions - even if only for a good supply of tasty mangoes! Notably his father helped him as he tried 
to grow different types of mangoes. His school also seemed supportive: 

 
…this kind of thinking (questioning and experimentation) was there. So it would connect to 
us when school projects [2] were made and then you could very easily take five mango plants 
and explain in school why this is sour and this plant is sweet. (Sc5/5:30) 
 
Sc5’s storyline shows only a small increase over time - largely based around original research. 

In his comments it is possible to see D2 (trying different mangoes and testing a hypothesis about 
mango and rains) and strong D3 (his supportive father providing a powerful ‘relatedness’, while his 
school offered options for projects) at his earliest age.  The preparation for university [3] was more 
fraught with greater emphasis on D1 capability (the main feature of the assessment systems that 
controlled his entrance to university) coinciding with less laboratory work (D2) and, to some extent, 
others setting his career goals (low D3): 

 
So, the push (to agriculture) was good by the parents but in that time they (the schools and 
university-preparation institutions) were giving me no hands on in the lab. (Sc6/7:14) 
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In university [4] he spent more time in the lab (D2) and working on projects that were 
important to him. He got in well with his supervisor who was active in research. This illustrates an 
aspect of D3 - the need to work with significant others, the SDT idea of ‘relatedness’.  He explained 
any small dips in his storyline [5] by ‘other pressures’, he implied the need to complete assessments 
(including practical assessments) and exams, interfering with his time to do research in the lab: 

 
Inquiry was still there in terms of what you were doing (in the lab) but not something you 
would necessarily enjoy doing in terms of subject (the background knowledge and ‘textbook 
work’ he had to complete to gain his final degree). I am given a problem where I know I will 
get the result but in research I feel you have to take a topic and search for answers and not 
be given them. (Sc5/9:11) 
 
The distinction he makes between lab work and constructed problems that are ‘just a test of 

technique’ and research emphasises the centrality of D3 in his feelings about behaving like a scientist. 
Lab work (D2) alone is insufficient, there has to be an element of autonomous control (D3) if the 
activity is to be real ‘research’.  When asked to explain this he again identified the notion of 
‘constructed’ work by which he meant activity where the key decisions had already been made: 

 
Because my research here was all constructed. I was told ‘this is the parameter. This is the 
variable. (Sc5/15:17) 
But there was a time when we were just told, ‘this is it. You are just doing this. This is your 
spectrophotometer. I give you the samples. You’re processing this. You’re giving me the 
results. So most probably I was mostly a technician. (Sc5/16:00) 
  
This did not feel, to Sc5, as if it was research. The missing component appeared to be D3 - 

the chance to engage as an active researcher pursuing his own agenda rather than simply following 
instructions from others. However, he did claim that his position at university now allowed him some 
responsibility for driving research projects across his department, more widely shown as a rise in his 
trace [6]. This was unusual as most interviewees reported a fall in research activity as they were 
embedded in the day-to-day work of university teaching. 
 
Sc6, Female, Chemist 
 

Sc6’s storyline shows a significant jump in her ability to think and behave as a scientist when 
she took a job in a professional pharmaceutical lab [1]. She explained that at A-level (a 2 year course 
followed in many UK schools prior to university) [2] she was learning about science and mainly D1 
whereas in her job she was actually thinking and behaving like a scientist. When asked what ‘thinking 
like a scientist meant’ she explained: 

 
Thinking like a scientist…well, I’m looking at what is in front of me in the lab, thinking 
about why it’s happened, what I need to change to make it happen the way I want it to 
happen… or what’s gone wrong … um any other different ways I could get to the same 
result… or experienced colleagues that could contribute to the experiment. (Sc6/5:00) 

 
When asked if she had done any practical work in school at A-level she said ‘not really’ and 

when further questioned about her A-level lab work experiences she was clearer: 
 
I wouldn’t count that (practical work at A-level) as 'being a scientist' because it's very much 
following a recipe…knowing what I now know about teaching , it’s very much following a 
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recipe…and that’s very different (to science)… science is very much unknown territory. 
(Sc6/7:42) 
 
Her A-levels emphasised D1, the content required for passing the examination, and D2 in 

terms of recipe-driven practical work. Only when she reached the professional lab did she experience 
the range of D2 and any aspect of D3 - a chance to engage with significant others in a task that 
involved her making a contribution to a real research project. 

The Storyline then jumped downwards [3 to 5] which corresponded to changes which reduced 
her personal control including routine work and teaching and [5] when she took time out to have 
children:  

 
I was very much on a treadmill of routine analysis and though I did have to use my brain … 
most days… but sometimes there were times when I just had to tap numbers into computers 
and things like that …so it drops off there … [3] (Sc7/9:00) 
I got a lectureship … and my priority there became teaching, preparation of teaching, 
assessment …getting to grips with that type of role and my research, what I call the real 
science, my research, dropped off to almost one day a week. [4] (Sc6/9:35) 
 

When we asked what she meant by ‘real science’ she explained: 
 
Real science is trying to find answers to things broadly…or finding the methods, new 
methods to find answers to things. (Sc6/10:30) 

 
Figure 8 
 
Sc6 Completed Storyline Form 
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She went on to explain that she was not really doing any ‘real science’ - that had been delegated 
to her students: 

 
At this point I’m thinking the only science that is happening here is in my … three PhD 
students. (Sc7/10:45) 
 
Clearly, she feels limited at this time [3 to 5] because her personal opportunity to do ‘real 

science’ directly (i.e. conducting the research herself) was limited not by D1 (she is at the peak of her 
field) or D2 (she has contributed to significant laboratory projects) but because her autonomy (D3) 
has been severely reduced by the time demands of management. However, as she reflected further, 
she saw herself acting as a ‘consulting scientist’ by which she meant that she was involved, admittedly 
at one step removed, from the physical research by offering high level and strategic advice and support 
to her PhD students [6] playing to her strengths in D1, D2 and D3 explaining the rise in her storyline 
trace. 
 
Sc7, Female, Physiologist 

 
Sc7 was keen to be a scientist from an early age influenced by a talk given by Heinz Wolfe at 

her school. Sc7 described her home as being supportive with high expectations.  This illustrates a 
significant feature of D3 in science. To opt to become a scientist, a decision often taken at a relatively 
young age and largely mandated in the UK prior to age 16 where choices about A-levels can effectively 
rule out later ambitions to pursue science, involves issues of personal choice (autonomy) that includes 
emotions, values and a sense of self. In the case of Sc7 the significance of important others (relatedness 
in SDT terms) was clear. Interestingly, she was not obviously ‘good’ at science - she volunteers that at 
school she was only tangentially involved in the practical work central to D2: 

I went to a really awful school [1] where girls weren’t really encouraged to do science … I 
was in a physics class with 5 girls and 35 boys and we weren’t allowed to do experiments 
because we were girls.  But sixth-form college was very different, much more academic so 
that’s how I managed to get to university. (Sc7/4:52) 

 
However, when she arrived at university [2] the disappointment was considerable: 

 
I found it (the university course) the most boring thing on earth. I did biochemistry and I 
remember sitting in the first lecture, I was so excited to go to university and it was so boring 
and I just thought … “Oh no! Why am I here?”. (Sc7/5:40) 
 
Again, an event with clear D3 references changed things. She found herself working in a lab 

[3] and ‘doing research’ with people who she valued and who valued her:  
 
I really scuffed my way through university until I got to the final year and then … you had to 
pitch for a final year project and I applied for the professor’s project … so I ended up in the 
PhD lab and it was fantastic! Doing research and it was amazing! And I just thought “This is 
what it’s all about!” And I went from being bottom of the class to getting a 2:1. (Sc7/6:08) 
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Figure 9 
 
Sc7 Completed Storyline Form 
 

 
After graduation she got a job as a part time technician [4] and was later asked if she would 

like to do a PhD. Her research explored the immunological basis for recurrent miscarriages and 
eventually produced a significant contribution to knowledge and a step towards treatment for this 
condition. This was significant and important work that matched her skills and her values showing 
clear D3 links. At [5] she took some time out to have children.  Over subsequent years, a teaching 
post at a university [6] led to research opportunities [7] and then supervision of PhD students until 
she was running a department with her own research grants. At this point she was acting as an advisor 
in a range of research and teaching projects. This fed D3 in terms of the personal significance of the 
work (she chose to do this) and the value ascribed to her work (D3 competence) by significant others 
(D3 relatedness): 

 
The Head of research encouraged me to apply for some funding for a PhD student …so I 
got that student and she was successful and then I acquired another one … and another one 
… and then I got a grant … and then because I’d now got people in the lab and because I 
was becoming more senior I was seen as someone who knew how to do it and so other 
people invited me to be on their supervisory teams… I now spend most of my time thinking 
like a scientist … both in my teaching and my research. (Sc7/14:52) 
 
When asked if her teaching interfered with her research she was clear: ’most of my 

psychological time thinking about research’ (Sc7/16:40). She talked about mentoring her PhD 
students, reviewing papers for a journal and analysing data for an internal project at the university as 
examples of her ‘thinking about research’. She explained that her brain was ‘always thinking about 
analysis really’ (Sc7/19:08) which she equated with ‘thinking scientifically’. Most D2 references 
amongst other interviews were to practical work, whereas, in Sc7’s case, she was doing no practical 
but working with others in terms of the aims, variable control strategies, and interpretation of the 
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results rather than handling the equipment.  However, when asked to talk about the time, early in her 
career when she was working in the PhD lab in London [3], and why she felt that was a time of growth 
in her thinking as a scientist she was clear that it was not simply about control of variables (D2). The 
references to personal autonomy and the opportunity to make decisions (D3) are very clear: 

 
It was weird … it’s a combination of fun as in, the PhD students were having such a laugh, 
they were just enjoying doing science so much. They were working really hard … get in 
really early and go home really late and what they were doing was really complicated, 
interesting and complicated. Whereas all my experience of lab classes up to then was 
essentially cooking …. essentially taking ingredients, putting them in a pot, heating them up 
and seeing what happened and, you, following a protocol is not exciting. (Sc7/20:10) 

 
Sc8, Male, Chemist 
 

Sc8 recognised very clear threshold points related to growth in skills (D2) and personal 
autonomy (D3) concerning an ‘independent research project’: 

 
‘There are very definitely threshold points … some of the more significant ones were at the 
start of my degree [1] … I did a four year integrated Masters program, I think the first two 
years were very different to the second two years and so Year 3 [2] was a big step up in 
scientific methodology because we got to do an independent research project during the 
third year of my degree. That made a significant difference. In the fourth year [3] we did a 
larger scale independent project so again that contributed largely to that development which 
was built on during the PhD. (Sc8/2:58) 
 
Returning to his years at A-level [4] he complained that they were stressful and did not 

contribute to his developing as a scientist because of assessment pressures: 
 

A-level was mostly targeted at exam performance, so there wasn't much scope for designing 
experiments, testing hypotheses…seemed to be a lot of practising for the exam questions. 
(Sc8/5:08) 

 
He found that at degree level there were changes, in both educational philosophy and educator 

desires, towards encouraging students to develop their own ideas (D3) and ‘the thought processes of 
a professional scientist’ (Sc8/5:58). When asked what these ‘thought processes’ are, Sc8 was very clear 
and provided a summary of the typical scientific method that sits largely in D2 but with references to 
theories from D1: 

 
So, it is based on a cycle largely making an observation of a phenomenon in the real world, 
developing an idea or hypothesis that rationalises why that observation can be made in the 
way it is … then design an experiment to test that hypothesis… evaluating the results. 
(Sc8/6:05) 
 
Despite his description of ‘the scientific method’ (D2) as a simple, almost personal process he 

emphasised collaborative working in teams as a key part of being a scientist: 
 
I think it (team work) is an important part of science. If you look at any of the major 
research challenges they are all interdisciplinary in nature. In order to form a productive 
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research team you need contributions that span the conventional discipline boundaries … it 
requires that close level of collaboration. (Sc8/8:03) 

 
Figure 10 
 
Sc8 Completed Storyline Form 

 
 

Sc8 also distinguished between training in formal skills and independent research: 
 

A lot of the formal training that was put into place in the first year and the second year of 
the degree helped bring out those skills (research skills involving scientific method and 
collaboration) but I really think it was going into the lab and putting a lot of that into 
practice in independent research that brought it up to almost where it is now. (Sc8/9:45) 
 
The conversation then moved on to discuss the Problem-Based Learning (PBL) curriculum 

used at Sc8’s university. When it was introduced he identified lack of student engagement with their 
science courses as a significant issue - almost a nervousness about even discussing chemistry with their 
peers and tutors in case they displayed a lack of understanding in their answers. When asked how they 
solved this problem he did not reach for better teaching on scientific method (D2) but in a shift 
towards supporting student autonomy (D3): 

 
The only way we’ve been able to solve that problem is to give students almost complete 
control of that type (PBL) of learning experience. (Sc8/18:44) 
 
His storyline trace finished at the maximum indicating he was thinking and behaving as a 

scientist more now than at any other time in his career [5]. This was unusual as most of the storylines 
tend to dip slightly as participants took on more teaching or administration duties. Sc8’s rise seemed 
to be linked to his active involvement in the research his students were initiating and doing, a 
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component of the department’s PBL approach.  When asked if there was anything he would like to 
add about his experience of becoming a scientist he was very clear - it was about personal control and 
the degree of autonomy available (D3): 

 
I think it's entirely down to being put in control of situations to develop as a scientist is to be 
given that responsibility … plan, design, carry out and reflect on your own experiments  … 
the overall message is that it's got to be something that you’re in control of, something that 
isn’t scripted, something that there isn’t a fixed end point to … unlike some of the early level 
educational experiences people have.’ (Sc8/23:44). 

 
Discussion 

 
Given the obsession with D1 and D2 in the research literature about science education we 

anticipated that the storylines would have shown a gradual rise as participants mastered more of the 
theoretical background (D1) and gained more skills (D2). However, the emphasis for the eight 
participants seems to be much more around D3, and high levels of D3 always seemed linked with high 
levels of scientific activity, while low levels of D3 always indicated a lack of what the participants called 
‘real science’. This corresponds with our contention that D3 includes ‘psychological energy’ (Bevins 
& Price, 2016) which is an essential factor in driving scientific activity.  Psychological energy, as we 
conceive of it, is produced by a combination of autonomy, competence and relatedness in the same 
way as intrinsic motivation as described by SDT. (Deci & Ryan , 2006; 2012). Our 3D model moves 
scientific activity from a process to be completed by implementing aspects of prior knowledge (D1), 
alongside relevant skills (D2), into a conscious strategy adopted by an autonomous individual (D3) 
using aspects of D1 and D2 to achieve a personally valuable goal.  

References to autonomy and being ‘in control’ appear regularly (Sc2; Sc5; Sc6) and are always 
related to high points in participants’ sense of ‘doing real science’. This autonomy brought 
responsibilities, participants talked about working harder, seeking to understand issues more deeply 
and ‘feeling bad’ when things did not work out (Sc1; Sc2). Participants also expressed the opposite 
perception - that the lack of autonomy reduced the activity to meaningless techniques or procedures 
(Sc4; Sc5; Sc8).  The participants made a number of comments about increased competence with some 
identifying teachers (Sc5) or changes in courses (Sc2; Sc7) as significant. Participants distinguished 
between simple ‘rule-following’ and ‘thinking like a scientist’ implying that their sense of competence 
was more deeply-seated than being simply a high mark in an assessment (Sc3; Sc6; Sc7).  Reviewing 
the conversations, there are many references both to the notion of relatedness concerning being part 
of a scientific team or even group of friends (Sc4, Sc6) with shared interests and capabilities, a 
relationship with a particular teacher or mentor and even, in some instances, a relatedness linked to a 
sense of the planet and the natural (Sc3; Sc5), or family and friends (Sc6; Sc7). Sc8 simply claimed that 
scientific research is inevitably collaborative. 
 
Reviewing the 3D Model 
 

We argue that the conversations and our analysis supports our claim that science is best 
thought of as an activity that has three related but independent dimensions.  Our second claim is that 
a deficit in any of these dimensions will lead to activity that is not perceived as ‘behaving like a 
scientist’. If D1 or D2 are weak the activity is not ‘science’ since it does not draw on scientific domain 
knowledge or scientific method. It may be a valuable activity but it is, by definition, not science.  Our 
data shows that a deficit in D3 has a more subtle effect. People using scientific ideas and employing 
scientific method can be engaged in what some of our interviewees (Sc2; Sc8) described as, ‘training 
for science’ where an absence of D3 meant authentic science, which they often refer to as ‘real science’, 
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was not happening - both in terms of their comments and the, sometimes dramatic, falls in their 
Storyline traces.  In some instances a weakness in D3 led to the scientist absenting themselves (in the 
case of Sc7 to travel the country with a student rock band!) whereas in others it led simply to 
continuing to work hard, but with little sense of purpose or achievement (Sc3, Sc4). Arguably this 
second, larger group of ‘willing conscripts’ were still motivated sufficiently to continue their ‘science’ 
courses and activities but they felt it was not authentic. The motivation had been lost but something 
more significant to the discipline had also been lost. The message is repeated in other conversations: 
science without strong D3 is not just boring or un-motivating, it is not authentic science in a very 
significant sense: it is not experienced as the ‘genuine article’ by the people engaged in it. So, while D3 
shares some commonalities with motivation (whether for science research or studying history or 
practising skateboarding) it is not exactly the same. 
 

Implications for Science Education 
 

We believe that we have provided evidence to support the idea that D3 is a critical part of 
scientific activity and suggest that this has serious implications for science education and the relative 
amounts of time spent on different activities within it. When we explore approaches to teaching 
science we notice that much of it, particularly in England, focuses on gathering more knowledge (D1) 
and practising routines and skills described as ‘scientific method’ (D2) in preparation for high-stakes 
assessments. Further research from the US and Australia report the curriculum cramping effect of 
heavy assessment instruments (Jones, 2007; Polesel et al., 2013). Even ignoring D3 for a moment, 
teachers in the UK regularly report the pressures on them to deliver large amounts of material in a 
limited time and that this prevents them from doing investigative work (a possible incarnation of D2) 
outside the limiting demands of the assessment regimen (Bevins et al., 2019). Having spoken to 
teachers from both the US and India, it seems that many of them share a similar perception that the 
science curriculum is already content heavy and the assessment regimen is dominated by D1.   

But if we argue that D3 is an essential part of scientific activity surely there must be some 
shadow of it in the curriculum? In our study of the National Curriculum Science Orders for England 
(Department for Education, 2013) we can find no overt references to the components we anticipate 
fitting into D3 (autonomy, relatedness, competence) and even the references to the nature, processes 
and methods of science refers to it as ‘working scientifically’, reducing it to a sort of cognitive mechanism 
with no reference at all to society more widely until students reach the age of 14. While versions of 
the NoS from the US (see Table 1 earlier in this article) may contain some connection to some aspects 
of our D3 (the notion of ‘a scientific community’ and that ‘society and culture influence each other’, 
has shadows of D3’s references to relatedness), any references to a scientist as a person rather than as 
a kind of biological and cognitive mechanism following a set of shared rules to produce an agreed 
understanding of a topic are not front and centre.  

Similarly, problem-based learning and socio-scientific approaches can provide opportunities 
for the ‘scientist as a person’ with a social context to be revealed and communicated to students in 
lessons. However, these approaches are still relatively rare, despite the fact that a range of meta-
analyses (Minner et al., 2010; Schroeder et al., 2007; Schwichow et al., 2016) show that emphasising 
the real world context of the science and allowing collaborative working not only increases motivation 
but improves performance. Indeed, it may be that the enlivening of otherwise boring material by an 
exciting or dramatic context may be the sole motivation for including aspects of D3 in the teaching 
and learning strategies rather than to reflect the nature of scientific activity itself. However if D3 is 
present as an integral part of scientific research, as claimed by the researchers quoted in this article, 
then supporting it is not simply a possible teaching strategy or a way to make material about electricity 
‘sexier’ but a fundamental requirement?  
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Possible Ways Forward 
 

The researchers and educators quoted in this paper are amongst the most successful of their 
years, they are the people who make it through to research and teaching posts, and they are clear on 
two issues. The first is that no D3 means no ‘real research’ (Sc8) with only ‘constructed’ (Sc6) problems 
on offer. The second is that their science education did not always provide the necessary third 
dimension in their studies and, in some instances, almost drove them from a career in science. If we 
are to help students to develop into ‘real’ scientists we have to accept that D3 is not a desirable extra, 
any more than D1 or D2 is, but an essential requirement. To avoid D3 or maintain that it is less worthy 
of a place in our, admittedly crowded, curricula may mean that most students have a limited experience 
of ‘real science’ and are unlikely to become the research scientists and technologists we need to solve 
some of the global problems we now confront as a species. 
But how can one ‘teach’ students ‘autonomy’, ‘competence’ or ‘relatedness’? These are not simply 
facts and theories or skills and capabilities and cannot be ‘taught’. Maybe they are ‘caught’ by students 
as they work in classrooms that support student autonomy, that allow working in collaborative groups 
and aim for mastery rather than the performative goals of traditional public examinations? Researchers 
working in SDT have been looking at environments that support, or reduce, student autonomy and 
other related D3 factors for a number of years (Hyungshim et al. 2016) and have published useful 
advice on these matters.   

In our previous paper (Bevins & Price, 2016) we suggested D3 existed. In this paper we present 
evidence that it is familiar to scientists who have actually engaged in research. We now propose to 
create D3-friendly science materials and approaches and evaluate their impact in terms of student 
motivation, perception of the nature of science, and eventual achievement. 
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ABSTRACT 
 
STEM education researchers are well aware of the need for increased access and inclusivity in 
Science, Technology, Engineering, and Mathematics (STEM) education for students from culturally 
and linguistically diverse (CLD) backgrounds. One of the many barriers for students from 
underserved cultural and linguistic groups is the difficulty of connecting families to school models 
of STEM education. This is one reason we advocate for improvement in culturally relevant STEM 
curriculum and content instruction. This commentary does not focus on STEM content instruction, 
although we certainly believe children from CLD communities deserve high expectations and high 
quality, culturally sustaining, STEM pedagogy. In this article we discuss non-curricular skills that are 
vital to success in STEM – and the advantages of sharing with family members the importance of 
particular essential life skills that support STEM learning. Communicating these essential “STEM 
Smart skills” showcases the power and influence that families have in kids’ STEM learning. In this 
commentary we describe a school-based family STEM night that included a demonstration that 
success in a STEM task is not based primarily on content knowledge but on “STEM Smart skills.” 
Many family members found success in the activity, regardless of parents’ educational level or 
background in STEM. Family members’ rich life experiences, critical thinking skills, and cultural 
knowledge include these “STEM Smart skills.” We argue that teachers and schools should 
communicate to families about these life skills. This focus can benefit students by highlighting family 
members’ power and role in teaching and modeling, essential skills for students’ STEM success. 
This focus also can benefit educators by challenging common stereotypes about families from 
underrepresented cultural and linguistic backgrounds. In this way, acknowledgement of “STEM 
Smart” life skills could play a small part in dismantling structural racism and inequitable power 
relations between schools and communities. 
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Introduction 
 

Science, technology, engineering, and mathematics (STEM) education research identifies 
STEM education and STEM career paths must become more accessible and inclusive for students 
from culturally and linguistically diverse (CLD) backgrounds (Jong et al., 2020). Previous research has 
documented a number of structural barriers in education and society toward STEM achievement 
among students from underrepresented groups (Buck et al., 2020; McGee, 2020). This article focuses 
on one specific aspect of increasing equity in STEM education – strengthening the alliance between 
schools and families in culturally relevant and culturally sustaining ways. One way to increase CLD 
students’ interest in pursuing advanced STEM education is through communicating and showcasing 
STEM strengths and connections that already exist within cultural communities (Johnson et al., 2014; 
Magee et al., 2020). We suggest one approach to family engagement in STEM that focuses not only 
on STEM-specific topics, but also on non-STEM-specific (and oftentimes non-academic) life skills 
that are essential for success in STEM education. Communicating these essential “STEM Smart skills” 
showcases the power and influence that families have in kids’ STEM learning.  

In this commentary we describe a school-based family STEM night that demonstrated success 
in a STEM task that is not based primarily on content knowledge but on “STEM Smart skills.” We 
found many family members had success in the activity, regardless of parents’ educational level or 
background in STEM (Hoffman et al., 2021b). Parents’ and guardians’ rich life experiences, critical 
thinking skills, and cultural knowledge include critical “STEM Smart skills.”  We argue that teachers 
and schools should consider these “STEM Smart skills” and communicate about them to families. 
This focus benefits families by highlighting parents’ and guardians’ power and role in teaching and 
modeling essential skills for students’ STEM success. This focus also benefits educators by challenging 
common stereotypes about families from underrepresented cultural and linguistic backgrounds. In 
this way, acknowledgement of “STEM Smart skills” plays a small part in dismantling structural racism 
and inequitable power relations between schools and communities. 
 

Culturally Sustaining Pedagogy: A Conceptual Framework 
  

We propose a model of STEM family engagement based in culturally sustaining pedagogy 
(Paris, 2012; Paris & Alim, 2017). This asset-based pedagogy builds from heritage and contemporary 
practices of communities of color while critically examining assumptions about the (lack of) value of 
community practices versus dominant cultural practices. Like other asset-based pedagogies, culturally 
sustaining pedagogy views communities of color as important sources of language/literacy practices 
and cultural ways of being that support students’ academic achievement. Simultaneously, culturally 
sustaining pedagogy seeks to sustain “linguistic, literate, and cultural pluralism as part of the 
demogractic project of schooling” (Paris & Alim, 2014, p. 88). Scholars have applied culturally 
sustaining practices in mathematics (Leonard, 2018) and science (Oatman, 2015) learning contexts. In 
particular, we argue that family engagement activities can amplify and increase the visibility of the ways 
in which communities’ rich cultural knowledge and life experiences are relevant to STEM learning. 

 
STEM Education and Family Engagement 

 
Research over the last decade consistently shows a variety of barriers to STEM education and 

career accessibility for students from underrepresented cultural and linguistic groups. These barriers 
include educational quality in many non-White and low-income communities, access to opportunities 
to apply STEM skills, lack of role models and mentorship in STEM careers, lack of culturally relevant 
pedagogy in K-12 classrooms, school and work environments that stereotype or devalue students’ 
identities, and marginalization in the workplace (Jong et al., 2020; McGee & Robinson, 2020). We 
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believe a majority of educators want to connect with families as allies and advocates for their children’s 
educational achievement. Yet many educators – most of whom are from the White, monolingual 
English-speaking background dominant in U.S. schooling – are only comfortable engaging parents 
and STEM content through the dominant STEM curricula that reflect a White, Eurocentric cultural 
framework (Mensah & Jackson, 2018; Leonard et al., 2010). Likewise, it can be difficult for families to 
connect to their children’s schooling if they do not feel connected to the school due to cultural or 
linguistic differences or if they do not have much formal education themselves (Thomas et al., 2020).  

We believe that all parents need to know that success in STEM comes not only from 
disciplinary or content-based knowledge but also from particular essential life skills that support 
STEM learning. Communicating these essential “STEM Smart skills” to CLD families can be 
especially significant in acknowledging the influence and importance of families’ cultural heritage, 
funds of knowledge, and professional skills (Gonzalez et al., 2006; McKenna & Millen, 2013). 
Understanding how caregivers can support children’s mindset, tenacity, and critical thinking skill 
development helps them realize the power and influence that they have over their students’ STEM 
learning. Showcasing families’ “STEM Smart skills” also is instructive to educators and administrators 
who may be accustomed to viewing their students’ families through a too-common deficit-based lens 
(Hoffman et al., 2021b). 

We want to emphasize that we are not focusing on family engagement initiatives because of 
incorrect perceptions of families of students as a barrier or impediment to students’ STEM learning. 
On the contrary, we agree with current family engagement research that challenges such traditional 
top-down (and often deficit-based) “parent outreach” initiatives (Albrecht, 2020; Goodall & 
Montgomery, 2014). Instead we aim for a cooperative asset-based approach that focuses on families’ 
funds of knowledge and STEM-related life skills. In this vein, we approach our role in school-based 
family engagement activities not as the visiting experts, but as facilitators with the opportunity to point 
out to both parents and school staff the connections between parents’ prior knowledge, families’ 
cultural heritage, and the skills students need for success in STEM fields. In this commentary, we 
describe a school-based event for families where we demonstrate that success in a STEM task is not 
always based on content knowledge.  

We argue that teachers and schools should consider explicitly addressing “STEM Smart skills" 
both with students and with families. These “STEM Smart skills” are life skills that caregivers can 
support at home. When parents and guardians realize their own power and role in teaching “STEM 
Smart skills,” they recognize how essential they are in students’ STEM success. We urge STEM 
educators to consider the usefulness of communicating the importance of these “STEM Smart skills” 
to families. We encourage STEM education researchers to consider further research into the role of 
these “STEM Smart skills,” both in STEM learning and in STEM family engagement. 
 

The Need for STEM Smart Skills 
 

Educators and families alike are nurturing young STEM thinkers who will solve the problems 
of today and develop new tools to resolve future problems not yet encountered. The upcoming 
generation must be prepared to address: (1) societal needs for new technological and scientific 
advances; (2) economic needs for national security; and (3) personal needs to become fulfilled, 
productive, knowledgeable citizens (Zollman, 2012). From an equity-oriented approach, the need for 
increased skills relates to overlooked needs of learners from marginalized communities and the 
overdue need for social justice in STEM education (Barton, 2003; Leonard et al., 2010). Robert Berry 
III, Past President of the National Council of Teachers of Mathematics, along with his co-authors 
(2020) state that teaching mathematics for social justice is critical for four reasons: building an 
informed society; connecting mathematics with students’ cultural and community histories; 
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empowering student to confront and solve real-world challenges they face, and helping students learn 
to use mathematics as a tool for social change (Berry et al.). 

As we said before, preparation for STEM innovation requires more than just content 
knowledge or exposure to STEM content. Families can buy all the STEM-marketed kits and toys they 
want, but these predesigned, partially assembled kits will not prepare young “STEM Smart” citizens 
for meeting upcoming challenges. An intellectual risk taker’s mindset, an innovator’s tenacity, and a 
skeptic’s critical thinking skills are must-have attributes all children will need to solve the problems of 
the future. Children need to develop perseverance and critical thinking to analyze multiple arguments, 
to innovate possible solutions, and to advocate for causes they support.  
 

Identifying Five “STEM Smart Skills” 
  

When engaging with families, we stress five "STEM Smart skills" for students. With families 
we use the acronym SMART as a mnemonic device to help us communicate these essential life skills 
for STEM learning: S for productive struggle, M for usefulness of mistakes, A for STEM’s relevance 
for all people, R for intellectual risk taking, and T for critical and divergent thinking.  

1. “Struggle can be productive” (S): We feel that the importance of working through 
challenges is important to "STEM Smart" thinking. When we talk about “struggle” in terms of 
learning, we’re specifically talking about persistence through tackling tough problems. A student with 
a "STEM Smart" mindset is willing to tackle tough concepts and problems that do not have instant, 
easy answers. Key components to this type of learning are persistence and reflection about what works 
and what does not work. In “productive struggle” (NCTM, 2014), it is vital that a student’s efforts are 
productive so as to reinforce a student’s self confidence and willingness to persist doing challenging 
tasks. 

We discuss with families the importance of giving students time and opportunity to manage 
their struggles through adversity and failure by not stepping in too soon or helping too much. When 
adults step in too quickly to solve a problem for students, they take the intellectual work away from 
the learners (Warshauer, 2015). Hiebert and Wearn (1993) and Borasi (1996) found that this practice 
repeated over time can contribute to students viewing struggles with learning mathematics negatively 
instead of viewing struggle as an opportunity to learn. In our experience, parents and guardians 
appreciate hearing about this relevant research. 

2. “Mistakes are how we learn” (M): STEM skill development cannot flourish without 
acceptance of mistakes as natural, even welcome, parts of the learning process. Being wrong makes us 
uncomfortable, but students cannot develop and discover without mistakes. Human ingenuity and 
invention is inextricably connected with making mistakes. Asking parents what notable “mistakes” we 
value in our culture may yield answers from champagne to Coca-Cola, from popsicles to penicillin, 
from sticky notes to Silly Putty, and from rubber to Velcro.  

Many students feel that their work needs to be perfect to be worthwhile. Perfectionism can be 
dangerous, as it has been linked to anxiety disorders and other forms of psychological distress. Even 
in small doses, this rigid unwillingness and fear of making mistakes prevents children from accessing 
a powerful tool for learning. Research on math anxiety, and now STEM anxiety, for the past 45 years 
has shown that math anxiety is a taught negative mental and physical response. Researcher Sheila 
Tobias (1993) said math anxiety is a mental phobia that affects children’s motivation, self-confidence, 
attitudes, beliefs, and thus achievement. In our experience, parents and guardians are interested in 
concrete suggestions to address students’ math anxiety; this relates to other areas of STEM as well in 
a broader discussion on the important role of making mistakes. 

3. “STEM is for all people in all places” (A): Dominant popular culture and school 
curriculum alike reflect a history of not recognizing or valuing certain groups of people and certain 
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types of knowledge in STEM. Since adults grow up surrounded by dominant cultural values, we often 
do not realize the messages children are receiving. 

Students need to know that everybody has a STEM heritage. Many students (of all racial, 
cultural, and linguistic backgrounds) are unaware that people throughout time and across the world 
have made discoveries and developed technologies not taught in U.S. schools. Often school 
experiences focus on European and North American inventions – particularly those inventions made 
by White males for application in profitable industries. As one example, most Americans were taught 
that Greeks were pioneers of science and mathematics, when actually the Aztec, Incan, Nubian, 
Malian, Congolese, South African, Kenyan, Egyptian, Indian, and Chinese civilizations all utilized 
mathematics and astronomy in their cultures much earlier (Prescod-Weinstein, 2015). 

It is critical for students to understand that STEM is for everyone for at least three reasons. 
First, students need to break the cycle of stereotyping their peers’ STEM potential based on racial and 
gender stereotypes (Jong et al., 2020). Second, STEM professional and educational spaces need to 
become more welcoming to students from underrepresented groups (Leonard et al., 2010). Third, we 
want to combat the too-common imposter concerns among CLD students that perhaps STEM fields 
are not for them (Boaler & Greeno, 2000; McGee, 2020). Actively modeling a broader cultural and 
racial view of STEM – as well as dispelling stereotypes surrounding computer geeks and lab coats – 
provides our kids with an equitable vision for STEM and thus a stronger “STEM Smart” foundation. 

4. “Reward intellectual risk taking” (R): Children’s intellectual risk taking is based on their 
natural sense of wonder and curiosity about the world and the way things work. Children who are 
willing to take risks develop a tendency to be open-minded, to generate multiple options, to explore 
alternative views, and to have an alertness to narrow thinking (Grotzer, 1997). Children’s disposition 
toward wondering, problem finding, and investigating relates positively to an adventurous mindset.  

As educators we need to foster an environment that allows children to go beyond their 
comfort zone. "STEM Smart" kids need to be bold. Whether it is learning a new skill, creating a 
business, or searching for a cure to a pandemic, having the bravery to take risks is an essential “STEM 
Smart skill.” 

5. “Think before you trust” (T): Some technical skills taught in today’s STEM courses will 
be obsolete by the time our students are adults. But "STEM Smart skills" are never obsolete. They are 
the habits of mind that give our children the agility to apply their existing knowledge and skills to new 
contexts. This final skill in our acronym alerts parents and guardians to the importance of critical 
thinking – itself a set of skills that is becoming increasingly important in the age of digital literacy and 
social media. 

We explain critical thinking as a combination of several intellectual processes. Critical thinking 
involves deciding what knowledge is relevant to a situation, evaluating information for quality, and 
applying the relevant knowledge to make informed decisions. "STEM Smart" critical thinking also 
includes questioning others’ thinking, recognizing contradictions and biases, and admitting flaws in 
our own thinking.  

In the current U.S. cultural climate, many people voice concern about finding and evaluating 
trustworthy sources of information (Ortutay & Klepper, 2020). Teachers at every level from 
elementary to graduate school have voiced concerns about young people's information literacy and 
media literacy skills. The ability to evaluate information, to make judgments, and to think critically, is 
key to a successful STEM mindset.  

Lack of skill and judgment in this key area of STEM thinking has a wide-reaching influence 
on our society in areas ranging from ill-considered government policies to significant numbers of 
Americans refusing to believe highly qualified scientific experts (Hayhoe & Schwartz, 2017). The Pew 
Research Center reported most Americans believe that science has benefited society, but fewer than 
one-third of Americans trust medical research scientists to give fair and accurate information (Funk 
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et al., 2020). Consumers of media of all kinds, print and digital, need basic skills in questioning reported 
trends, interpreting statistics, identifying bias, and recognizing the validity and reliability of data. 

Current K-12 students often view a friend’s reposted quote on social media as equally or more 
valid than an article published in a research journal. We want kids to question: the sources of their 
information, the possible bias of the sources, the resources these sources use for the information, and 
the analysis that was conducted on the information.  

 
Considerations for STEM Family Engagement Activities 

 
Current literature supports many possible forms of family engagement (Baker et al., 2016; 

Mahmood, 2013). As one example, we have done several “STEM Family Night” events hosted by 
elementary schools with large numbers of Spanish-speaking Latinx families. We advocate approaching 
such STEM family engagement activities with five key considerations: 

 
● Center the Event in Existing Community Relationships (Albrecht, 2020); 
● Connect with Community Knowledge, Heritage, and Values (Magee et al., 2020); 
● Choose a High-Interest, Integrated STEM Exploration Activity (Suh et al., 2020);   
● Make the Activity Hands-On and Challenging (NCTM, 2014); and  
● Focus on STEM as Inquiry for All Participants (Hoffman et al., 2021b). 

 
First, in terms of existing community relations, research identifies relationships with students as keys 

to learning families’ “funds of knowledge” and finding natural community partners (Gonzalez et al., 
2006; Moll et al., 1992; Rios-Aguilar et al., 2011). These funds of knowledge may be outside of 
commonly “aspirational” STEM fields such as engineering or medicine. Most jobs and learned skills 
require some level of expertise that can be related to "STEM Smart skills." 

Second, both culturally relevant STEM pedagogy and current family engagement research 
emphasize the importance of connecting with community knowledge, heritage, and values (Magee et al., 2020; 
Thomas et al., 2020). Choose a focus and activity that centers the experiences and identities of the 
families who will be attending (Kayumova et al., 2015). Recognition of the knowledge and resources 
families possess and bring into the school is at the heart of culturally sustaining pedagogy (Paris, 2012).     

Third, effective STEM exploration activities for family engagement are open-ended activities that 
encourage hands-on problem-solving. As family engagement events usually occur outside of the regular 
academic day, it is easier to do an integrated approach to STEM than in a traditional school curriculum. 
Further, open-ended activities lessen the impulse  to “find correct answers” or “teach parents” some 
STEM content. 

Fourth, the activity for the event should be novel, challenging, and interactive. It should require physical 
activity yet be accessible to multiple ages and abilities. Examples could include a competitive challenge 
of building the tallest freestanding tower out of dried spaghetti noodles, masking tape, string, and 
marshmallows. Another small-group challenge is building a “ringlet” arch using only Pringles potato 
chips.  

Fifth, we want all family members to view themselves as learners. Our activities demonstrate that fluency 
in English or possessing specific content knowledge is not necessary to STEM learning. At the end of 
the activity, we ask participants to join in a reflection to discuss what STEM is and what STEM is not. 
STEM skills are not content knowledge, but STEM success does not require the ability to use 
knowledge in solving problems. We want parents to encourage their children to become intellectual 
risk takers with the tenacity to tackle tough problems and the critical thinking skills to separate 
scientific information from opinions. 
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One Example of a STEM Family Engagement Event 
 

One successful event we have done at elementary schools is “STEM Family Night.” These 
events center around an interactive activity. We conducted two such events on weeknights at two 
different elementary schools in the same school district. At one school, the event was designed for 
families with children receiving services as English language learners. Parents and guardians were 
invited via email, and flyers printed in both Spanish and English were sent home in children’s 
backpacks. At the other school, where a large percentage of students come from bilingual families, the 
entire student body was invited to the event via bilingual flyers sent home in backpacks as well as 
weekly email newsletters. (Spanish was the most common language spoken by English learners at both 
schools, by far, although other languages were also represented.) Invitations for events at both schools 
welcomed entire families, including siblings.  

At both schools, administrators, including the principal, and teachers attended the event and 
the school provided dinner to all participants. Once families had time to eat and socialize, we 
welcomed everyone and invited them to move into groups to participate in a marshmallow tower-
building group challenge activity.  

In hands-on challenges like these, we ask participants to move into working groups having 
parents sit with other parents, kids sit with other kids of various ages, teachers sit with teachers, and 
school administrators sit with other administrators. We prefer this grouping strategy because we have 
found that some parents defer to teachers or school administrators if all adults are grouped together. 
When parents or teachers are grouped with children, the adults tend to direct the children. When 
parents are placed at a table with other parents, however, they feel less self-conscious about making 
mistakes and more likely to take risks and enjoy their errors. (As an aside, we have also noticed that 
the children relish competing with adults.) When participants represent several language backgrounds, 
we deliberately mix participants from different languages to show that learning can be accomplished 
with limited verbal communication.  

In our experiences, we observe that parent groups are much more reserved, often needing a 
lot of encouragement to try divergent ideas. In contrast, the groups of children are eager to experiment 
with various strategies to tackle the challenge, regardless of whether adults think such strategies might 
work. At one event, one group of children taped dried spaghetti noodles end-to-end before putting 
their marshmallow on top. Of course their tower would not stand; it bent over in an arc instead. But 
that did not bother the kids. They realized that they could make another arc at a right angle to support 
the first one. The two intersecting arcs supported the marshmallow. That group’s initial mistake 
produced a better result.  

Experiences like these demonstrate the importance of “STEM Smart Skills” and provide 
openings for conversations about the value of each of the five STEM Smart skills. Participants in the 
STEM challenge had to be willing to persist through struggle (“S”), make mistakes (“M”), consider 
the ideas of all group members (“A”), take risks (“R”), and think critically about possible solutions 
(“T”).  

As a physical “takeaway,” we give a bilingual handout with advice for reducing STEM anxiety 
and supporting a positive mathematical mindset in adults learning with their children (Boaler, 2015; 
Suh et al., 2021). In our event evaluations, parents described STEM education as more hands-on, 
enjoyable, and problem-based than expected. They saw the value of communicating in a team, allowing 
mistakes, and persevering as important aspects of learning "STEM Smart skills" (Zollman et al., 2020).  
 

Findings from STEM Family Engagement Activities 
  

As this is a commentary and not a research report, this article focuses on connecting 
multilingual family engagement with “STEM Smart skills” rather than sharing empirical results. 
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However, we do believe that we have learned six important lessons from our work on family 
engagement: 

1. A STEM activity does not need to focus on academic content; 
2. The STEM activity focus should begin with families’ funds of knowledge; 
3. Activities can focus explicitly on "STEM Smart skills;"  
4. School teachers and administrators need to take part, but not lead, in the activities to 

have the opportunity to adjust and expand their views of students’ families as partners 
in education; 

5. Family members are excited to be asked to join in STEM education; and 
6. Family members appreciate concrete examples of "STEM Smart" concepts and skills. 

 
Implications for Future Research 

 
Based on our experiences facilitating STEM family engagement events, we suggest three main 

areas for future research. These include the effects of family engagement programming, the effects of 
highlighting cultural connections, and the effects of "STEM Smart skills" on academic learning. 
 
Effect of Engagement Efforts on Students, Families/Communities, and Educators 
 

First, we encourage researchers to explore the efficacy of STEM family engagement events in 
developing STEM content knowledge, skills, and motivation. Researchers can also explore the impact 
of STEM family engagement events on school administrators and teachers – how witnessing family-
based informal and collaborative STEM exploration might reduce educators’ deficit perspectives of 
families’ interest in STEM, or their ability to support children’s STEM learning. Here are some 
additional questions researchers may want to explore: 
 

● Do families/communities change their view of STEM from being a product to being a process 
through family engagement activities?  

● Do families/communities see students' STEM abilities as fixed or open to growth?  
● Do family engagement efforts affect families’ perception of their role in teaching “STEM 

Smart skills” such as perseverance, intellectual risk-taking, acceptance of mistakes, 
appreciation of STEM in all fields, and critical thinking? 

● How do family/community engagement activities increase educators’ ability to make 
meaningful and authentic connections between STEM content and students’ lived 
experiences? 
 

Connections Between Student Cultures, STEM Heritage, and “STEM Smart skills" 
 

STEM education researchers can draw on STEM equity literature and family engagement 
literature to connect the STEM heritage and funds of knowledge of CLD families with STEM 
curriculum and instruction in schools. Such research is needed to explore how family engagement can 
support current scholarly efforts to “decolonize” STEM curricula (Anthony-Stevens & Matsaw, 2019; 
Howard & Kern, 2019; Kimbrough, 2017; Kimmerer, 2013; Nhemachena et al., 2020; Prescod-
Weinstein, 2015). Again, here are possible questions to study: 

 
● Do culturally relevant STEM activities deepen students’ and families’ understanding of STEM 

as part of their own heritage, instead of “belonging to” the dominant culture of U.S. education? 
● How does family/community engagement support efforts to relocate STEM knowledge 

outside of traditional narratives of Western scientific discovery? 
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● How does the use of cultural connections in family engagement activities affect families’ view 
of STEM learning and their children’s potential future in STEM careers? 

● What effect does highlighting cultural connections in family engagement activities have upon 
educators’ views of their students, their students’ communities, and of the intercultural 
connections possible in STEM teaching? 

● What effect do efforts to decolonize STEM curriculum and pedagogy have upon teachers’ 
attitudes and student achievement? 
 

Effect of “STEM Smart skills” on Academic Achievement in STEM 
 

Research also can examine the connection between students’ STEM learning and the skills 
and knowledge we call “STEM Smart skills." Possible research questions here could include: 

 
● What effect does each of the five "STEM Smart skills" have on student achievement in STEM 

academic areas? 
● What are effective ways schools and teachers can increase students’ "STEM Smart skills"? 
● What are effective ways educators can communicate to families their critical role in nurturing 

students’ "STEM Smart skills" development? 
 
In closing, we wish to emphasize the importance of basing future research efforts in authentic 

school-family partnerships (or school-family-university partnerships), which centralize the family’s 
role and knowledge in supporting students’ STEM learning. Like Moll et al. (1992), we view these 
“strategic connections” to families as essential to centering our understanding of funds of knowledge 
around the family’s values and ways of knowing rather than the researchers’ values and ways of 
knowing (p. 132).  

We view the families’ role in nurturing “STEM Smart skill” development as essential to 
support students’ STEM education. Like Moll et al. (1992), we urge an approach to research that 
values parents’ funds of knowledge rather than a traditional approach that centers around our 
preconceived values and assumptions. A research agenda that integrates the views and values of CLD 
families aligns with culturally relevant and sustaining teaching practices (Ladson-Billings, 1995; Paris 
& Alim, 2014, 2017).  

The field of STEM education is evolving. As part of this evolution, we strive to be more 
culturally responsive STEM educators and researchers. The purpose of this commentary is to 
encourage further discussion about research in connecting the three growing areas of STEM Smart 
skill development, culturally relevant STEM instruction, and family engagement. Such a focus can 
benefit students by highlighting family members’ powers and roles in teaching and modeling essential 
skills for students’ STEM success. This focus also can benefit educators by challenging common 
stereotypes about families from underrepresented cultural and linguistic backgrounds. 
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