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ABSTRACT

Creating written records while working on mathematics tasks may help students make
sense of tasks and free cognitive resources for reasoning as they offload elements of the problem-
solving process to paper. We investigated the extent of cognitive processes of multilingual learner
(ML) and first-language English speaking (non-ML) students’ record keeping (RK) on tasks
designed with and without supports for RK and the association between evidence of students’
cognitive process in RK (EC-RK) and the correctness of their solutions. Grades 7-9 (aged 12 to
16) students worked on RK-Supported or RK-Unsupported versions of three tasks, and we
rubric-scored their solutions for both EC-RK and correctness. Overall, higher EC-RK scores were
associated with greater correctness, confirming the utility of EC-RK for solving mathematics
tasks. The presence of supports, though, did not increase the extent to which students’ RK
reflects their cognitive processes, yet correctness of ML students’ solutions was associated with
solving the RK-Supported versions of the tasks. This result suggests benefits of these supports for
ML students apart from encouraging EC-RK.

Keywords: student record keeping, geometry and measurement; problem solving; multilingual
students; task design; cognitive load

Introduction
Motivation and Research Questions
Engaging in problem solving is an essential part of mathematical learning (Lindquist et al.,

2017; National Council of Teachers of Mathematics [NCTM], 2000, 2014). Understanding what
fosters successful engagement in problem solving is vital for supporting students. Previous studies
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provide evidence that keeping records in various forms supports successful engagement in
mathematical problem solving (Murata, 2008; Stylianou & Silver, 2004). Accordingly, the Mathematical
Record Keeping Supports Cognition and Communication study investigated the role that Grades 7 to
9 (aged 12 to 16) students’ record keeping (RK) plays during their mathematical problem solving. We
sought to understand how task design can support successful record keeping, guided by foundational
ideas about problem solving (Polya, 1957; Schoenfeld, 1980, 1992) and Cognitive Load Theory
(Sweller, 1988, 1994, 2003). Students who are multilingual learners (MLs) are of special interest in the
study because the increased cognitive load they face with language demands (Barbu & Beal, 2010;
Campbell et al., 2007) suggests that they may be particularly poised to benefit from RK.

Supporting Students’ Problem Solving

The importance of problem solving is emphasized in standards that guide mathematics
teaching, learning, and assessment in the United States and internationally. Examples include the
National Council of Teachers of Mathematics’ (NCTM) problem-solving process standards and
effective teaching practices (NCTM, 2000, 2014), the applying and reasoning domains of the TIMSS
2019 Assessment Frameworks (Lindquist et al., 2017), and the Standards for Mathematical Practice (SMP)—
including SMP1: “Make sense of problems and persevere in solving them”—articulated in the Common
Core State Standards for Mathematics (National Governors Association Center for Best Practices &
Council of Chief State School Officers, 2010). These policies stem from decades of research on the
centrality of problem solving in mathematics teaching and learning (e.g., Liljedahl et al. 2016,
Nunokawa, 2005; Schoenfeld, 1980, 2014). Both policy and research support an emphasis on learning
and using strategies for solving mathematical problems as essential elements of a strong and successful
mathematics education for all students.

Record Keeping

Previous research points to numerous cognitive processes that affect students’ problem-
solving performance, including executive function (Swanson, 2011) and working memory (e.g.,
LeBlanc & Weber-Russell, 1996; Ng & Lee, 2009; Paas & van Merriénboer, 2020). Other research
(e.g., Cellucci, 2019; De Toffoli, 2018; Murata, 2008; Stylianou & Silver, 2004; Sunzuma et al., 2020)
suggests that RK can support students’ effective management of these processes and use of cognitive
resources by allowing them to offload some demands of problem solving into external records.

For this study, RK refers to the act of capturing pieces of information on paper (or
electronically) during work on a mathematical problem. Records may include words, quantities,
symbols, and equations (e.g., Rexigel et al., 2024), as well as drawings and diagrams (e.g., Stylianou &
Silver, 2004). Problem solvers’ records may serve a range of purposes: highlighting information that
is provided in the problem or ideas and predictions related to solving the problem, creating various
representations, and documenting problem-solving steps or partial solutions (Gordon et al., 2015).
Problem solvers can act on the information captured in records or retrieve it later, as needed, without
having to rely on memory (Paas & van Merriénboer, 2020). The act of creating records can therefore
support mental focus on other aspects of problem solving (Gordon et al.,, 2015).

Consider, for example, the work shown in Figure 1 that a student produced to determine the
perimeter of the large rectangle, given that its total area is 84 square units and it is composed of seven
congruent smaller rectangles arranged as shown. The records that this Grade 8 student (a ML) wrote
and drew on two different copies of the given picture while working on the task eventually led them
to correctly find the perimeter of the large rectangle and the side lengths of the small rectangles.
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Figure 1

Student Work on the Seven Rectangles Task
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Using two copies of the diagram allowed the student to offload calculations and information
about relationships between side lengths, and this in turn afforded them the opportunity to attend
more fully to the problem-solving process and to note the needed connections to correctly solve the
problem. The student labeled some of the side lengths with numerals, tracking the relationship
between the parts of the geometric figure. The arrows accounted for side lengths of the smaller
rectangles constituting the sides lengths of the larger rectangle.

Mathematics education literature offers diverse terminology which intersects with parts of our
definition of RK, including literature examining problem solvers’ creation of diagrams (e.g., Cellucci,
2019; Diezmann & English, 2001; Murata, 2008; Nunokawa, 1994; Purchase, 2014; Sunzuma et al,,
2020; Willis & Fuson, 1988), external representations (Zhang, 1997), and inscriptions (Moschkovich,
2008). Some of these terms are laden with meanings that we do not intend. For example, diagrams
and representations normally refer to records with some mathematical meaning that is relevant to
students’ conceptual development of ideas. The scope of records in which we are interested includes
conceptually meaningful records, although we argue that less mathematically substantial records can
also further students’ problem solving and are, therefore, worthy of study (Fernandes, et al., 2015;
Neumayer-DePiper, et al., 2015). For example, simply placing dots or hash marks on a diagram to
keep track of parts that have already been counted or managed can allow a student to focus on other
information needed to solve a problem. In addition, such RK can be a precursor to more meaningful
RK. We have observed students returning to and changing records after thinking about another aspect
of a task. For example, students have replaced dots that initially signaled that they had accounted for
parts with numbers that supported them in enumerating or totaling measures of those parts.

Investigating Supports for Record Keeping

Prior to the study reported here, we had investigated features of mathematics task presentation
intended to promote RK due to the evidence that RK plays a role in problem solving. For the current
study, we used these features to design and modify mathematics tasks to create two parallel versions,
one that incorporated features intended to support RK and one that did not include these features.
The aim of the current study was to better understand students’ success in problem solving when
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working with tasks specifically designed to support RK. The study’s overarching research questions
were: (1) What is the relationship between students’ use of record keeping and performance on tasks?
(2) How does student performance differ on tasks designed with supportts for record keeping versus
tasks without these supports? Given the role that visual representations and other records may play in
the mathematics classroom in supporting multilingual learners, the third research question was: (3)
What differences are evident in the impacts of students’ record keeping, and task-embedded record-
keeping supportts, for multilingual learners compared to first-language English speaking learners?

Theoretical Framework
Record Keeping and Cognition

Our theoretical framework is guided by Cognitive Load Theory (CLT), a learning and
instructional theory based on the temporary and limited nature of working memory and the
comparative permanence and unlimited capacity of long-term memory (Sweller, 1988, 1994, 2003).
Working memory draws on long-term memory but can only store about seven chunks of information
and process only two or three chunks of information at a time. If these limits are exceeded, working
memory becomes overloaded. CLT considers three types of cognitive load a learner needs to manage
for successful learning and performance: intrinsic load, extraneous load, and germane load (Paas & van
Merriénboer, 2020; Renkl & Atkinson, 2003; Sweller et al., 1998). Intrinsic load is the cognitive load
generated by the nature of the problem and the elements that need to be considered in working
memory simultaneously to understand the problem. A problem solver who has already learned what
is needed to solve a problem deals mainly with intrinsic load. Extraneous load is generated by processes
that are not necessary for performance, which may include distractions, anxiety, or expectations for
organization or presentation that do not aid learning. Finally, germane load is the cognitive load
generated in the process of learning. Germane load is particularly relevant for problem solvers who
are developing their understanding of the ideas needed to solve the problem. During problem solving,
students need to effectively manage the intrinsic and extraneous load within a problem to progress
towards a solution. RK may help students focus on intrinsic load and ignore extraneous load, in part
by offloading their thinking (i.e., onto paper) to free up working memory to manage germane load.

Researchers working with students from early elementary school through college have found
that successful problem solvers are able to develop representations of problems rather than working
directly with the text as given (De Corte et al., 1985; Diezmann & English, 2001; Fischbein, 1977,
Larkin et al., 1980; Nunokawa 1994; Rexigel et al., 2024) and that experts construct many more visual
representations than novices do during problem solving (Bodner & Domin, 2000; Stylianou & Silver,
2004). Developing a representation not only records information about a problem for storage and
retrieval but also shapes the problem-solver’s thinking (Chu et al., 2017; Meira, 1995). An effective
representation makes evident important relationships and constraints in a problem, allowing the solver
to determine actions that will lead to a solution to the problem (De Toffoli, 2018). Therefore,
appropriately capturing the structure of the problem can be a key step in determining a solution
(Bodner & Domin, 2000; Diezmann & English, 2001; Sunzuma et al., 2020), and doing so may involve
multiple steps of RK (Nunokawa, 1994). The first diagram that a student draws may not capture the
inherent structure of the problem; instead, it represents the elements that the student immediately
notices in the situation and the relationships among those elements. Such a step manages some of the
intrinsic and extraneous load. As the student continues interacting with the problem, they may modify
initial records to capture the inherent structure of the problem, enabling their working memory to
focus on the germane load.

RK’s Potential as Support for Multilingual Learners
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Current research on students who are multilingual learners (MLs) emphasizes the importance
of translanguaging, meaning students’ use of their full linguistic repertoire to engage in communication
and meaning-making (Garza & Arreguin-Anderson, 2018; Grapin et al., 2025). Translanguaging
acknowledges that students do not compartmentalize their languages in rigid ways; instead, they fluidly
navigate between them to communicate and construct meaning (Elshafie & Zhang, 2024; Garcfa,
2023; Garcia & Solorza, 2021). An expansive view of translanguaging highlights that students’
repertoire can also encompass non-verbal modes, such as gestures, drawings, or manipulating concrete
materials (Gonzalez-Howard et al, 2023). MLs, who are learning both content and language
simultaneously, often face challenges with the language of a problem (Abedi & Lord, 2001; Martiniello,
2008). The simultaneous demands of both challenging content and complex language can lead to
cognitive overload (Campbell et al., 2007). In terms of mathematical learning, this overload is largely
driven by the extraneous cognitive load imposed by language. For MLs, expansive translanguaging,
which includes resources like RK, is a critical asset for addressing language challenges and more fully
engaging with mathematical problem solving.

Any student can reduce extraneous load generated in a problem statement by using RK to
isolate the mathematical characteristics of the problem, for example by marking up the problem
statement, making notes, or creating a diagram. For MLs, these tools are particulatly effective when
paired with translanguaging strategies, allowing students to describe, question, and analyze
mathematical concepts using all of their linguistic resources. By using diagrams, for instance, students
can bolster the capacity of working memory by offloading part of their thinking onto the environment
(Paas & van Merriénboer, 2020; Tabachneck-Schijf et al., 1997) in order to access tasks in ways that
emphasize patterns, relationships, and spatial reasoning, fostering a deeper understanding of
mathematical structures (Echevarria et al., 2017). When these external records are created, the student
can focus working memory on a few key quantities and relationships at a time as they progress in
solving the problem (Paas & van Merriénboer, 2020; Zhang, 1997). Prior research into the use of
nonverbal resources, such as drawings, gestures, and manipulation of concrete objects, along with
writing or speech, suggests that such resources provide further opportunities for MLs (and others) to
develop proficiency with mathematics and mathematical language (Driscoll et al., 2012; Fernandes et
al., 2017; Fernandes & MclLeman, 2012; Moschkovich, 1999, 2002, 2010; Paas & van Merriénboer,
2020).

Methods
Participants

Fifty-six students participated in this study. Students were identified as MLs (n=20) or non-
MLs (n=306) based on their teachers’ reports of current receipt of their school’s ESL services. Each
student self-reported their gender, age, grade, and current mathematics class. (Students also responded
to survey questions about their current and previous participation in English as a Second Language
instruction, but anomalies in the data suggested that a number of students misinterpreted our intent
in these questions.)
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Table 1

Participant Information

Grade 7 (16) Grade 8 (27) Grade 9 (13) All Students (50)
Math Class ML Non-MLL ML Non-MLL ML Non-MLL. ML Non-ML

Accelerated 1 1 0 3 0 0 1 4
Regular 7 7 6 12 0 0 13 19
Remedial 0 0 1 0 0 0 1 0
Algebra 1 0 0 0 1 3 2 3 3
Algebra II 0 0 0 0 0 5 0 5
Other 0 0 2 2 0 3 2 5
Gender
Female 6 3 2 9 2 5 10 17
Male 2 5 7 9 1 5 10 19
Total 8 8 9 18 3 10 20 36

Table 1 displays information about the sample of students. The distribution of females and
males was about the same for the participating ML and non-ML students, except that the participating
MLs in Grade 7 were disproportionately female while the participating MLs in Grade 8 were
disproportionately male. The sample included 27 females and 29 males aged 12 to 16, of whom 16
were in Grade 7, 27 in Grade 8, and 13 in Grade 9. Twenty students (36%) were identified by their
teachers as current ML students, while the remaining 36 students (64%) were not designated as MLs
at the time of participation.

Data Collection Instruments

The instruments used in this study were developed and refined in earlier phases of work. We
first selected 11 geometry and measurement tasks that could be completed in 10 to 15 minutes, had
multiple entry points or solution strategies, were of high cognitive demand, and offered opportunities
to use RK for conceptualizing and solving the task. We revised the tasks to make them clearer,
removed unnecessary language that might be difficult for MLs, and provided space and/or prompts
for student RK. During cycles of administering, analyzing, and revising we had students solve tasks
and interviewed them about their work, reviewed the written work and video-recordings of the
sessions, and revised the tasks for subsequent rounds of administration and interviews. Thirty-six pilot
students participated during this phase (10 MLs, 26 non-MLs). Most completed 3 tasks, resulting in
96 task interviews. We analyzed the dataset of written work and interviews to identify task features
that supported students” RK (Heck et al., 2015).

We then developed RK-Supported (RK-S) and RK-Unsupported (RK-U) versions for five of
these eleven tasks that elicited a variety of RK used in solutions and for two additional tasks similar
to those five. The RK-S versions included several features we had identified as supporting students’
RK, such as including an early prompt to write or draw something, having extra copies of diagrams,
formatting the task to include space for making records, designating specific answer spaces, and
providing an active audience or “real world” context for the solution. The RK-U versions were
designed to present the same task with the same cognitive load, but without the features to support
RK. These tasks were again refined through an iterative process of interviewing students (21 students,
8 MLs, 13 non-MLs for 74 total task interviews) about their work on the tasks, making modifications
to the tasks, and testing the modifications in further interviews. We also solicited feedback from three
mathematics educators who reviewed the RK-S and RK-U versions of these seven tasks, specifically
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to judge the comparability of cognitive demands of the mathematics and the language in the two
versions, and recommended ways to improve comparability.

This process led to selection of three tasks for the current study: Floor Plan, Painted Shapes,
and Seven Rectangles (see Appendix A). We selected these tasks because they had RK-S and RK-U
versions that appeared to provide differing levels of support for RK without altering the cognitive
demands of the task. The tasks were accessible to many students, meaning that most of the students
interviewed were able to make some progress even if they were not able to complete the task. At the
same time, the tasks were complex enough that students were not able to complete them mentally.
Multiple strategies could be used to successfully solve each task, and for one task (the Floor Plan task)
there are many different correct solutions. In addition, we selected tasks that address different
geometry and measurement standards and use different skills and knowledge.

Along with the three tasks, task booklets included a background survey for students to self-
report age, gender, and mathematics class' (see Appendix A). We varied the order of the three tasks
and the task versions (RK-S versus RK-U) across 12 forms of the booklet (Forms A-H) to ensure an
even distribution of data among the RK-S and RK-U versions of the three tasks. The order of RK-S
and RK-U tasks within each booklet was chosen to accommodate two goals. First, we wanted to delay
students’ exposure to the RK supports because we believed students’ RK for a subsequent task could
be affected by exposure to RK supports in a first task. Therefore, every task booklet started with a
RK-U version of one task followed by a RK-S version of a second task. We also varied whether the
third task was RK-S or RK-U. The 12 forms of the task booklet were randomly assigned to students,
blocking by grade level and by ML status to ensure comparable distribution on these factors.

Data Collection and Preparation Process

From February 2016 through June 2016, three researchers, including authors 2 and 3, collected
data from 56 students in two school districts in Massachusetts and one in North Carolina. Data
collection took place in students’ schools via one-on-one sessions between a researcher and a student.

At the beginning of the one-hour session with each student, we gave the student a task booklet
and followed a script to instruct students about how to work in the booklet. Students could clarify any
word’s meaning at this time. They were instructed to work in order and let us know before they moved
to the next task. Students could use colored pencils/pens and were asked not to erase any work (they
could cross out work). The students were moved to the next task after 15 minutes to ensure that they
worked on all three tasks. When students started the second task, which was designed to support RK,
we made additional scrap paper available and pointed out extra copies of figures provided with the
task. When students started the third task, if it was an RK-U task version we collected the extra paper
and set it aside. If the third task was an RK-S task, we again pointed out the additional supplies,
including any extra copies of figures that were associated with that task.

During data collection, we used two video cameras to capture each student’s working process.
One camera was focused on the task booklet to capture the student’s RK, and the other camera was
positioned to record the student as they worked on the task. In addition to collecting this video
footage, we documented the student’s work using a researcher note-taking version of the task booklet.
Our intention was to document as thoroughly as possible the student’s use of RK on each task so that
the note-taking booklets, when combined with the student’s actual work booklet, could serve as the
primary artifacts for analysis. The video recording of the session served as additional evidence for any
instances in which it was unclear when or how a student made and used particular records.

! Students were also asked to self-report race/ethnicity and present or past engagement with English as a Second
Language services at school. Numerous anomalies in these data suggested that students’ responses were likely not
valid for reporting.
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Scoring Rubrics and Scoring Process

We analyzed each task that students completed using two different rubrics — one focused on
the extent to which student’s RK on the task provided evidence of the student’s cognitive processes
for solving the task, regardless of whether they ultimately achieved a correct response. Scores on this
rubric indicated the extent to which students” RK as a whole provided evidence of their cognitive
processes while solving the task; such evidence might be found in individual records (e.g., the
placement of an auxiliary line) or the evidence might appear in connections among records (e.g.,
counting dots connected to quantities they measure). The second rubric focused on the correctness
of the student response to that task (see Appendix A). These rubrics went through several rounds of
revision, each informed by members of the research team applying the rubrics to student work
products and discussing the scoring. The Evidence of Cognitive Processes in Record Keeping rubric
was the same for all tasks, although specific anchoring examples were provided in relation to the three
different tasks. The Correctness rubric was specific to each of the three tasks. Possible scores on each
rubric were 0, 1, 2, 3, or 4, with a higher score indicating greater evidence of cognitive processes in
RK (EC-RK) or a more complete and correct response (Correctness).

For example, the work shown in Figure 2 on the Painted Shapes task by a Grade 9 student (a
non-ML) received a rating of 4 for EC-RK and 3 for Correctness. The rating of 4 for EC-RK indicates
that:

e the RK provided evidence for how the student conceptualized and worked through the
task, because it shows the decomposition of the figures and means of counting square
units;

e the RKappeared to have a problem-solving purpose, because it documents how total areas
were determined; and

e connections could be identified among individual instances of RK, because the
decompositions of the figures and the enumeration of square units corresponded to the
equations used to find total areas.

Although the student correctly answered that Shape C would require more paint, they did not find the
correct area for both figures. The Correctness rating of 3 accordingly indicates that the student’s work
was mostly correct, with the incorrect area for Shape D apparently the result of a minor error in
translating the figure, including an extra half square unit in the bottom row of the figure, rather than
evidence of a conceptual misunderstanding.
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Figure 2

Student work on the Painted Shapes Task (RK-S)
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Three members of the research team, including authors 1 and 4, trained to use the rubrics
before scoring the tasks. First, we reviewed a set of responses and discussed them together in relation
to each rubric, making edits to the rubrics until a consensus was reached. Next, the scorers
independently scored a small set of responses, and then we discussed and resolved discrepancies in
the scores, leading to further editing and additional examples provided on the rubrics to improve
consistency. Finally, two members of the research team independently scored each of the task
responses. The two scorers discussed all discrepancies to come to a resolution, sending responses to
a third scorer if they could not resolve a discrepancy through discussion. To improve consistency, we
scored and reconciled all responses to one task at a time. Initial inter-rater reliability was good for
Correctness (independent scores were the same for 83 percent of responses) and marginal for EC-RK
(54 percent of responses were assigned the same score independently). For each of the rubrics, over
97 percent of the independent scores were within 1 point of each other across the set of responses,
and scorers resolved over 99 percent of the discrepancies through discussion.

Results
Analysis

After rubric scores were determined, we performed a series of within- and across-student
quantitative analyses. We first examined the relationship between students’ EC-RK and correctness
of solutions. We then compared students’ work on tasks with and without RK supports and examined
whether the impact of RK supports was different for ML and non-ML students.

We employed two overarching multi-level models, one with EC-RK as an outcome variable
and the other with Cotrectness as the outcome variable. We built the models progressively to examine
our two factors of interest—tasks designed with and without RK supports, and students’ EC-RK in
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problem solving—first separately and then in combination. For both factors, we also investigated
differences between ML and non-ML students in interaction with these two factors. For each model,
we nested the three tasks that students completed (level 1) within each student (level 2). To account
for differences among the tasks and students’ grade levels, we accounted for task type and student
grade in all models. The variables included in each model, one progression with EC-RK as the
outcome variable and the second progression with Correctness as the outcome variable, are outlined
in Tables 2 and 3, respectively (equations for the models can be found in Appendix B).

Table 2

Analytic Models for EC-RK Outcome

Level 1 (Task) Level 2 (Student) Interaction
ML status x
Task RK ML RK
Model type Support  Grade status Support
RK-0 Y Y Y
RK-1 Y Y Y Y
RK-2 Y Y Y Y Y
Table 3
Analytic Models for Correctness Outcome
Level 1 (Task) Level 2 (Student) Interactions
Task RK ML EC-RK ML status x ML status x
Model type Support Grade  status RK Support EC-RK
C-0 Y Y Y
C-1 Y Y Y Y
C-2 Y Y Y Y Y
C-3 Y Y Y Y
C-4 Y Y Y Y Y
C-5 Y Y Y Y Y
C-6 Y Y Y Y Y Y Y

Note: The task type dummy variables at level 1 excluded the Painted Shapes task. At level 2, Grade 7
and non-ML students were the excluded categories. All models used grand mean centering for all
variables to aid in the interpretation of coefficients.

Results for Use of EC-RK in Responses

Our original intent in creating the RK supports was to encourage students to make records as
a part of their solving processes. We designed the RK supports in pilot studies to identify and test
features that students indicated either encouraged or discouraged their creating of records (Fernandes
et al., 2015; Heck et al., 2015). For this study, our purpose was to examine whether the inclusion of
RK supports in the task design was associated not with the presence or quantity of records, but more
pointedly with the extent to which records reflected students’ cognitive processes, that is to say, with
students” EC-RK. Model RK-0 included variables for task type at level 1 and students’ grade level and
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ML status at level 2, establishing the foundation for this set of analyses. EC-RK scores did not differ
by students’ grade level or ML status. Evidence of cognition in RK was significantly lower for both
the Seven Rectangles (7 (df) = -4.24 (110), p < .05) and Floor Plan (7 (df) = -2.71 (110), p < .05) tasks
compared to the Painted Shapes task. Figure 3 shows the expected scores in Model RK-0 for each of
the tasks (full results in Appendix B). Inclusion of the task type variables accounted for these
differences in all further analyses.

Figure 3

Model RK-0 Expected Scores for EC-RK, by Task

EC-RK

Painted Shapes Seven Rectangles Floor Plan

In Model RK-1, we examined whether inclusion of RK supports in the task design had an effect on
the level of students’ EC-RK. No significant association was detected. Finally, in Model RK-2, the
effect of including RK supports was considered in interaction with students’ ML status. Here again,
no significant association was found. Neither model resulted in an appreciable reduction in variance
at either the task or student levels (full results in Appendix B).

Results for Correctness of Responses

To investigate the impacts of RK supports on students’ problem solving, and particulatly on
ML students’ problem solving, we proceeded in three stages. First, we examined whether students’
EC-RK was associated with greater progress toward a correct response, both as a main effect and in
interaction with ML status. Next, we examined whether the inclusion of RK supports in the task
design was associated with correctness, regardless of observed EC-RK, overall and by ML status.
Finally, we examined the combined effect of students” EC-RK and the inclusion of RK supports in
the task design, again as both a main effect and in interaction with ML status.

We began with a model (C-0) that included task type, grade level, and ML status to provide a
foundation against which other models could be compared. The expected scores for Model C-0 shown
in Figure 4 indicate that scores on the Seven Rectangles task were lower, on the whole, than scores on
the other two tasks (# (df) = -3.95 (110), p < .05). Neither grade level nor ML status were significant
predictors of correctness scores. The remaining variance in model C-0 was 74 percent for level 1 and
86 percent for level 2 (full results in Appendix B). The three tasks were not designed to be of equal
difficulty, so overall differences in correctness scores by task was acceptable. Including task type in all
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models accounted for these differences analytically. The results indicating no overall differences by
grade level or ML status suggested that, on average, the collection of tasks did not favor students
according to these factors, which was the intended result of the task selection, review, and design work
completed in the early phases of the study.

Figure 4

Model C-0 Expected Scores for Correctness, by Task

Correctness
[\S]
l

Painted Shapes Seven Rectangles* Floor Plan

Note: Scores on Seven Rectangles lower than scores on Painted Shapes and Floor Plan

(¢ (df) = 3.95 (110), p < .05).

Models C-1 and C-2 analyzed the effect of students’ EC-RK during problem solving, first as
a main effect only, and then in interaction with ML status. As illustrated in Figure 5, the results for
Model C-1 indicated a strong, positive effect of EC-RK on correctness of the responses (7 (df) = 6.98
(109), p <.05). A one point gain on the EC-RK rubric was associated with slightly more than a half
point gain on the correctness rubric. It is interesting to note that accounting for EC-RK eliminated
the significant difference in scores between the Seven Rectangles task and the other tasks. Including
the EC-RK predictor variable reduced variance at both levels of the model compared to Model C-0.
In Model C-1, the reduction was a modest 8% of variance at the task level (from 0.74 to 0.68),
indicating some differences in the effect of students’ EC-RK on correctness across the three tasks.
At the student level, there was a substantial reduction in variance of 52% (from 0.86 to 0.41),
suggesting that differences in EC-RK across students have a considerable effect on correctness. Model
C-2 added an interaction effect between ML status and EC-RK which was non-significant, indicating
there was no detectable difference in the effect of EC-RK on correctness between ML and non-ML
students. Accordingly, no additional reduction in model variance was evident.
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Figure 5

Model C-1 Expected Scores for Correctness, by EC-RK Score
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Note: Expected Scores are adjusted for Task, Grade Level, and ML status.

Models C-3 and C-4 analyzed the effect of including RK supports in the task design, first as a
main effect and then in interaction with ML status. According to the results of Model C-3, the
inclusion of RK supports made no overall difference in correctness scores—the coefficient for RK
Supports was 0 and coefficients for all other variables, along with the intercept, were essentially the
same as in Model C-0. However, the results of Model C-4 reveal an important difference among
students. The interaction between RK supports in task design and ML status was significant and
positive (7 (df) = 2.27 (108), p < .05). That is, ML students’ correctness scores were higher on task
versions that provided RK supports than on the versions that did not. This result is evident in a
positive coefficient for this interaction and a negative coefficient for ML status (¢ (df) = -2.49 (52), p
<.05). For these two models, remaining variance at both levels remained essentially unchanged from
Model C-0; in addition, correctness scores on Seven Rectangles were again significantly lower than for
the other two tasks. In the model, the inclusion of RK supports appears to explain the similar
performance of ML and non-ML students on the tasks overall. These supports appear to have been
helpful for ML students while having no detectable effect for non-ML students, as illustrated in Figure
0.
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Figure 6

Model C4 Expected Scores for Correctness, by Students’ ML Status and Task RK Support

Correctness

EM, Non-EM, EM, Non-EM,
RK-U Task RK-U Task RK-S Task* RK-S Task

Note: Expected Scores are adjusted for Task and Grade Level
* Significant interaction of ML status and Task RK support (# (df) = 2.27 (108), p < .05)

Models C-5 and C-6 examined the combined effects of students’ EC-RK and the inclusion of
RK supports in task design. In Model C-5 these two factors were included as main effects only, with
the results again indicating that students’ EC-RK was a strong, positive predictor of correctness (7 (df)
= 7.01 (108), p < .05), while the inclusion of RK supports did not itself predict correctness scores.
Also, adjustments for the inclusion of these two main effects did not result in a detectable difference
in correctness scores by students’ ML status.

In Model C-6, students’ EC-RK and the inclusion of RK supports were examined in
interaction with students’ ML status. In this model, only the main effect of students’ EC-RK was
significant, and it was positive (7 (df) = 6.62 (106), p < .05). This result suggests that once the positive
association of students’ EC-RK is accounted for, neither students’ ML status nor the inclusion of RK
supports in the task design help to explain correctness of scores. The reductions in variance at both
levels, compared to Model C-0, are similar to Models C-1 and C-2, also suggesting that accounting for
students” EC-RK is responsible for these results.

Summary of Findings

There were statistically significant differences in both EC-RK and Cotrectness scores across
the three tasks; these differences were accounted for by including task type in the analyses. Overall,
ML students and non-ML students tended to give similarly correct responses to the tasks; that is, when
all responses to the tasks were considered, regardless of task version, there was no significant
difference in students’ Correctness scores related to ML status (Model C-0). Neither students’ EC-RK
nor the correctness of their responses differed by grade level.

Findings for the three research questions are summarized in Table 4. The specific evidence
from analytic results to support each finding is presented in the sections that follow.



MULTILINGUAL LEARNERS 43

Table 4

Summary of Findings by Research Question

Research Question Findings
1. What is the relationship between evidence Higher EC-RK scores were associated with
of cognition in students’ record keeping and  higher Correctness scores, regardless of ML

performance on tasks? status or provision of RK supports.
2. How does student performance differ on Across all students, the inclusion of RK
tasks designed with supports for record supports on tasks did not account for
keeping versus tasks without these differences in students’ EC-RK or Correctness
supports? scores.
3. What differences are evident in the impacts ~ Non-ML students’” Correctness and EC-RK
of RK supports for multilingual learner scores did not differ for tasks with and without
students compared to first-language English  the RK supports.
speaking students? ML students’ Correctness scores were higher

on tasks with the RK supports, even though
ML students’ EC-RK scores did not differ on
tasks with and without the RK supports.

What is the Relationship Between Evidence of Cognition in Students’ RK and Performance?

Students whose RK provided more evidence of their cognitive process in problem solving
tended to have higher scores for correctness than those whose RK provided less of this evidence,
regardless of ML status, as indicated by the positive association between EC-RK and Correctness
(Models C-1 and C-2) and the non-significant interaction between ML status and EC-RK (Model C-
2).

How Does Student Performance Differ on Tasks Designed With Supports for RK Versus
Tasks Without These Supports?

There was no difference in overall student performance on tasks that included the RK
supports and tasks that did not; as a whole, students’ RK did not provide greater evidence of their
cognitive processes, nor did they respond more correctly on the task versions with RK supports. That
is, there was no significant difference between the expected scores on tasks with RK supports and
those without RK supports for either EC-RK (Model RK-1) or Correctness (Model C-3). In addition,
the positive association between students’ EC-RK and the correctness of their responses was similar
on the RK-S and RK-U versions of tasks, as indicated by the similarity between Models C-1, which
did not include the RK Supports variable, and C-5, in which RK Supports had a non-significant effect.

What Differences are Evident in the Impacts of RK Supports for Emergent Multilingual
Students Compared to First-language English Speaking Students?

ML students’ responses to tasks that included RK supports were more correct than their
responses to versions without the RK supports, unlike non-ML students, for whom no difference was
detected. No other significant differences were detected between ML students and non-ML students
on the RK-S and RK-U versions of the tasks. The different impact on Correctness for MLs and non-
MLs is evident in the significant positive association between the RK Supports*ML status interaction
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term and Correctness (Model C-4). The RK supports appear to explain the similar overall correctness
of MLs’ and non-MLs’ responses, as suggested by the presence of a significant negative association
between ML status and Correctness in the model that includes the significant positive association for
the RK Supports*ML status interaction (Model C-4) but not otherwise.

These results were somewhat contradictory to the full set of hypotheses originally driving our
investigation, namely that RK supports would lead to more RK in general, yielding greater EC-RK
that would in turn lead to greater correctness. Our results indicate that ML students developed more
correct responses to the RK-S versions of the tasks even though their RK on those versions did not
offer greater evidence of their cognitive processes in problem solving. To illustrate this finding and
offer an example for further investigation, Figures 7 and 8 show two ML students’ work on RK-S and
RK-U versions, respectively, of the Painted Shapes task.

Figure 7

Student Work on the Painted Shapes Task (RK-S)

Painted Shapes Task

3. Maria thinks sbout bow much paint she needs for Shape L and Shape F. Does Shape E use
more paint than Shape F? Does Shape F use more Jo Shape
sume amount of paine? Telp Miria by circling onc of the answers.

E and Shape F use the

(D) K uses more paint (i) E and F use the sawe amount of paint  (iii) F uses more paint

Shape |

An extrs copy of these shapes is on a scparate picee of paper

2281 6-11 Page 6
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Painted Shapes Task

Maria does not agree with your answer for Shape E and Shape F, Explain your thinking to her.
You can use numbers, words, and pictures in your explanation.
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Note: In Figure 7, the student generated rectangles that had the same areas as the shapes and
recognized that both shapes have areas equal to the same rectangle (though it was rotated in one case).
In Figure 8, the student working with the RK-U version of the task created extensive records, however,
no comparison was made between the areas of the shapes. The multiple calculations for one figure’s
area were provided without clear indication of which was final.

Figure 8

Student Work on the Painted Shapes Task (RK-U)

Painted Shapes Task

2. Look at Shape E and Shape F. Does Shape E use more paint than Shape F? Does Shape F
use more? Or do Shape E and Shape F use the same amount of pgint?
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Both responses were rated at level 3 on the EC-RK rubric, which indicated evidence of RK
supporting conceptualization of and solution to the problem, but without all elements of the solution
process represented in RK. The two responses, however, were judged differently for correctness, with
the first rated a 4 for its correct comparison without errors related to concepts or calculations. This
student did not actually calculate the areas of the two figures, but rather decomposed and recomposed
them into figures that could be determined as congruent via rotation and translation, leading to the
conclusion that they require the same amount of paint.

The second response was rated a 2 for correctness because the strategy of partitioning the
figures into portions made up of whole unit squares and partial unit squares is viable as is the approach
of enveloping the parallelogram (Shape E) and the trapezoid (Shape F) within a rectangle and
subtracting enclosed areas that are not part of the target figure’s area. However, the student’s work
does not apply this approach consistently, leading to a correct determination of the area of Shape E
but not Shape I because the subtraction of area outside Shape F was incomplete. In fact, the records
in the explanation portion of the student’s work show the full and correct subtraction for Shape E,
but not for Shape F. One of the unconnected calculations within this portion of the response (36-
12=24) may actually represent the correct subtraction for Shape F, but the response does not include
an explanation for calculating the area of Shape IF comparable to the drawing used for Shape E. Such
an explanation for Shape IF may have led the student to notice the original error in subtraction of areas
and then identify the correct conclusion.

Examples such as these allow us to hypothesize how the RK-S versions may have supported
ML students in a few ways. First, the RK supports potentially improved ML students’” understanding
of what solving the task entailed. The RK-S version of Painted Shapes had the student first practice
drawing a figure that required the same amount of paint as a given figure, so the notion of comparing
areas of figures was elicited in this support that specifically prompted creation of a record. Also, the
RK-S version provided response options below the question (see Figures A3 and A4 in Appendix A)
to reinforce what the question asked and what sorts of results a solution could lead to. It is notable
that the work shown in Figure 7 provides an answer to the task’s question, but the work shown in
Figure 8 does not explicitly do so.

Our exploratory examination of such examples from ML students, with similar EC-RK but
varying correctness, suggests that these two features may have enhanced ML students’ ability to
interpret correctly what was being asked in the task, leading to more complete solutions to what the
task required. Other features of the RK-S version, such as additional space and the audience (a
fictitious student named in the task instructions in Figure 7) for the solution, may have enabled
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students to organize and make use of their RK to manage the cognitive load needed to solve the
problem in ways the EC-RK rubric did not indicate. The records in Figure 7 are organized and succinct
in how targeted they are to the cognitive process the student has used in their solution. Many more
records arose in the solution shown in Figure 8, with the lack of space making it crowded. The
diagrams and calculations, while demonstrating much of the student’s geometric and numeric
cognitive processes, are not organized in a way that makes clear what result the student’s solution to
the task supports.

Discussion

We found within our sample that students whose RK provided greater evidence of their
cognitive processes when completing measurement/geometry tasks were more successful in solving
the tasks. The tasks were, by design, complex enough to make it difficult for students to do all needed
work mentally, so offloading through RK provided a way to manage intrinsic load and avoid
extraneous load. The association between evidence of cognitive processes in RK and correctness of
responses also suggests that the nature of students’ records matters. All students engaged in some RK
for almost all of their responses. However, higher scores on our EC-RK rubric required RK that
appeared to help students conceptualize the task and that exhibited connections among different
records. In many high-scoring responses, RK that was not inherently meaningful, such as counting
dots, was present, and it was connected to more meaningful records, such as numeric labels. These
characteristics suggest that the records may serve purposes beyond offloading some of the cognitive
demand for storage and retrieval. It appears that students’ creation of records contributed to their
thinking process, as others have posited (e.g., Chu et al., 2017; Meira, 1995; Paas & van Merriénboer,
2020).

The RK supports we included in the design of the tasks appeared to help ML students solve
the tasks correctly, even though the supports did not result in significantly greater evidence of cognitive
processes in their RK. As explained in the results, this finding did not fully reflect the chain of
hypotheses for the study yet suggests the RK supports were useful to students in ways apart from
generating RK that reflected their cognitive processes. MLs may experience heightened intrinsic and
extraneous load associated with solving tasks due to language demands in the tasks (Barbu & Beal,
2010). These tasks with and without RK supports were designed to have the same intrinsic demand,
and both versions of each task were designed to minimize extraneous demand. However, the features
designed to support RK may have promoted ML students’ understanding of the requirements of the
task, and organizational features and additional space to support RK may have led to greater utility of
RK for MLs. That is, although we did not observe greater evidence of cognitive processes in RK on
tasks designed to support it, the supports nonetheless appear to have aided MLs in utilizing their
problem-solving assets more effectively to solve tasks correctly. RK supports should be studied
further, as our results suggest that they may have strengthened students’ ability to effectively use RK
or related assets (e.g., translanguaging) for processes such as interpreting the language of the task,
offloading and retrieving information, or making connections, and thus contributed to ML students’
success in solving the tasks.

There were several limitations to this exploratory study that have implications for future
research. We found a correlation between evidence of cognitive processes in RK and correct work in
a small sample study of Grades 7 to 9 students’ work on three mathematical tasks, and it will be
important to examine students’ RK on other tasks, at other grade levels, and in content areas other
than geometry and measurement to establish the extent to which these results might generalize.

The rubrics we developed for this study, particularly EC-RK, focused our work but also
narrowed our view. Our definition of RK requires that records be externalized, and therefore
observable, but applying the details of the rubric required interpretations about the purposes and
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connections among records that may not have been clearly observable. Think-aloud or stimulated
recall studies would reveal more than we were able to understand. In addition, more interpretive
studies may provide insights into the mechanisms by which RK supports students’ success in solving
problems. Our follow-up interpretations of students” RK provide clues to how the extent and quality
of RK may support correctness, but further studies are needed to investigate whether RK is an
explanatory factor in increased correctness or if there is some other underlying factor that explains
both RK and correctness.

Although we attempted to collect students’ self-report of current or past receipt of school ESL
services, we necessarily relied on teachers’ reports for grouping students in the study. In either case,
we acknowledge that we have characterized the multi-faceted identity of multilingual learner with a
very simple designation of MLL and non-ML. We were not able, in this study, to examine the influence
of varying first languages, language proficiencies, or experiences apart from receipt of school-provided
services. Research knowledge around these ideas is rich and rapidly developing. We hope to inspire
more nuanced research on the intersection of RK and other facets of MLs’ language and mathematics
experiences.

Finally, we intentionally limited our study to RK in written form, because the spontaneous and
variable use of written records we had observed inspired our research. Digital platforms that would
permit RK when solving tasks such as these were not readily available and familiar to students at the
time of the study. The more common use now of digital platforms for students to conduct and
document their mathematics work is structurally different from writing alone, certainly influencing the
potential for designing RK supports and potentially influencing how students will use RK and to what
effect.

In practice, our findings have implications for mathematics teaching, teacher preparation, and
task design. The correlation between evidence of cognitive processes in students’ RK and their success
in solving tasks implies that encouraging and supporting RK can aid students in successful problem
solving. Task design alone did not provide sufficient encouragement and support to result in increased
evidence of cognitive processes in RK of a form that supports success. However, task design to
support RK does appear to aid students, especially MLs, in interpreting and accessing problems and
in using RK effectively to solve problems. Curriculum material designers and teachers can incorporate
RK supports into tasks and assignments. In our experience, student materials often do not provide
structure for students to explore a problem through organized RK. Materials designers could add
features we identified that offer this structure. Teachers can be prepared to take advantage of task
design features that include these supports by explicitly helping students use RK for identifying and
organizing relevant information as well as offloading cognitive demand during problem solving.
Student materials also seldom provide space for exploring and solving problems. Teachers can format
handouts to provide ample blank space, ensure that diagrams are large enough for students to write
or draw in, and make extra copies of the task or parts of it available. Students may also be hesitant to
make use of blank space in this way. During this study, in fact, many students specifically asked the
interviewers if they could write on diagrams or in the blank space provided, suggesting that teachers
should explicitly permit or encourage students to use available space and resources for RK.

The relationship between evidence of cognitive processes in RK and correctness of solutions
for all students, but the failure of the RK supports within the tasks to generate such records, suggests
that additional work is needed to understand how to promote and support effective RK. Other efforts
in teaching may be required to engage students in showing evidence of cognitive processes in their
RK, such as teacher modeling, highlighting effective RK in presentations of student work, and
questioning techniques that press for students to record their cognitive processes while problem
solving. Most importantly, alongside support for ML students’ assets such as translanguaging,
supporting RK in task design and encouraging RK in teaching may strengthen MLs’ mathematical
engagement in getting started, persisting, and succeeding in solving problems.
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Appendix A: Study Instruments
Figure Al

The Floor Plan Task (RK-U 1 ersion)

Floor Plan Task

This flocr plan shows the four rooms i an 2parment. The floor plan shows the measurements
for each room.

135 215

08 [ Batroom |-y Living Room | 108

Lom Bedroom L.l 0l i 1l [Kichen | E 105
Tem Tek

Design afleor plan for a new apartment with five rooms. The apartment will be rectanguler with
alength of 30 feet and 2 width of 20 feet.
1. Draw afloor plan for the familvthat shows the fiverocms on the ractangls below. Inchude aliving
room, a bathroom, a kitchen and two badso oms.
Label the length of the walls of each room.
»  The five rooms will take up all the space in the aparment. The apartment does not have
any halls or other rooms.
s  NMzkethe area of theliving room 120 feet squared (%) or bigger.
» Makethe area of the bathroom 50 feet squarad.
* The kitchen and the two bedrooms will be 10 feet long and 10 feet wide, or bigger.

20 oot

30 faat
2. Whatis the area of each room?

«ID» Page 3
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Figure A2

Seven Rectangles Task (RK-S 1V ersion; Extra Diagrams Omitted)

Seven Rectangles Task

Marizhas 7 rectangles that are the same size and shape.
She turned 3 rectangles like this: She turned 4 rectangles liks this:

Shemowes the rectangles to mzkes big Rectangle A.

The totzl area of big Rectangle A is 34 square inches.
1. Fmdthe length snd width of one of the small rectangles.
Length= mches  Width= mehes

2. What is the perimeter of big Rectangle A7

The permster of big Fectangle A i3 mches.

¢l Paged




MULTILINGUAL LEARNERS 55

Figure A3

Painted Shapes Task (RK-U 1V ersion)

Painted Shapes Task Painted Shapes Task

Shape A and Shape B are pamted grey. Shape A and ShapeB use the s2me amount of pamt 2. Lookat ShapeE and ShapeF. Doss Shape Euse more paint than Shape F? Doss ShapeF use
mors? Ordo ShapsE and ShapeF use the same amount of paint?

i
] ShapeB ShapeE ShapeF
I ShapeA | | |||

L /

[ ] Explain your thinking for Shape E and Shape F
[ You can use numbers, words, and picturss i your sxplanation.

1. Lookat Shape C and ShapeD. Doss Shaps Cuse more paint than ShapeD? Doss ShapeDuse
morz? Ot do 8hape C and ShapeD usethe same smount of paint?

| | shapec ShapeD
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Figure A4

Painted Shapes Task (RK-S Version, Extra Diagrams Omitted)

Painted Shapes Task

Maria is painting shapes grey. She painted Shape A.

Shape A

1. Draw another shape called Shape B that will use the same amount of paint as Shape A.

Painted Shapes Task

2. Maria thinks about how much paint she needs for Shape C and Shape D. Does Shape C use
more paint than Shape D? Does Shape D use more? Or do Shape C and Shape D use the
same amount of paint? Help Maria by circling one of the answers.

(i) C uses more paint (i) C and D use the same amount of paint (iii) D uses more paint

Shape C

Shape D

Painted Shapes Task

3. Maria thinks about how much paint she needs for Shape E and Shape F. Does Shape E use
more pamnt than Shape F? Does Shape F use more? Or do Shape E and Shape F use the
same amount of paint? Help Maria by circling one of the answers

(i) E uses more paint  (ii) E and F use the same amount of paint (iii) F uses more paint

Shape E

Shape F

Painted Shapes Task

Mana does not agree with vour answer for Shape E and Shape F. Explain your thinking to her.
You can use numbers, words, and pictures in your explanation
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Figure A5

Sample Correctness Rubric (Painted Shapes Task) and the Evidence of Cognitive Processes in Record Keeping Rubric

MaRKS Task Scoring Rubric for Correct Answer/Workable Approach — Painted shapes Task

Score|  Description

Specific Indicators’

4 | Amathematically sound
response that is all correct

® Provides correct answer(s) to both of the comparisons:
o Indicates (i) Shape C uses more paint (area of C=19, area of D=15.5)
o Indicates (ii) € and F use the same amount of paint (24)

AND

o There s  of flawed to finding o areas nor
small errors in area determination/comparison
AND

® Provides an explanation that supports the student’s answer for Shapes E and F by
comparing the aress using 8 visble strategy (which may be evident elsewhere in
the student’s work, not necessarily the “explanation” box) such as:
© counting squares or shading parts of the figures
decomposing and recomposing the figures
matching parts of the two figures to compare areas
encasing the figures in larger shapes and subtracting out extra ares
multiplicative calculations that appear to use linear dimensions.

0000

MaRKS Scoring Rubric for Record Keeping

Record Keeping

Description

The student’s cognitive process
on the task Is evident from the
RK.

A set of steps for arriving at the answer is evident from
the RK [why a false start was abandoned may not be
evident). Records are purposeful’ and connected.” Some
simple counts may have been done mentally.

It is evident how RK supported

It is clear how RK supported mest, but not all, of the

the student’s cognition on the student’s cognition and conceptualization of the task. The
task but some aspects are not purpose for most records is evident, but some
‘evident from the RK. are not apparent.

3 A response that is
mathematically sound, but
has some small errors or
omissions

» Provides an explanation that supports the student’s answer for Shapes £ and F
that compares the areas using a viable strategy

® For the C-D and £-F , any incorrect incorrect area
determinations are only due to small errors in calculation, counting, or matching

2 | Aresponse that has some
mathematically sound and
relevant ideas, but has
incorrect answers due to
some error in understanding

® There is evidence the student counted, caiculated, or compared areas (possibly
with errors or omissions) using viable strategles, but arrived at incorrect answers
due to a misunderstanding of how to use the strategies. (This includes using 2
wviable strategy that involves different area formulas for different shapes but
where some formulas used are incorrect )
OR

® There is evidence the student used a viable general strategy to compare areas,
but the student consistently used inappropriate strategies for counting partial
squares in one or both comparisons.
OR

© The student correctly answered the comparisons of Shapes C and D and Shapes E
and F BUT there is no evidence (including in the explanation for the last question)
0 indicate how the Shape E and F comparison was made.

It is clear how the student was
using RK to support cognition on
isolated parts of the task and
provides evidence about the
student’s conceptualization of
part(s) of the task.

Few, if any, connections are made between records. The
purpose for at least some records is evident from the
records, not from scorer’s understanding of the task.

All tasks: Knowing where numbers in a calculation came.
from based on diagram labeling provides sufficient
evidence of conceptualization to rate at leasta 2

Painted Shapes: Drawn grid lines and evidence of
counting provid evidence of

to rate at least a 2. Auxiliary lines suggesting
decomposition on at least 2 figures provide sufficlent
evidence of conceptualization to rate st leasta 2

Floor Plan: Labels for dimensions and room names on the
floor plan and area calculations or results for named
rooms provide sufficient evidence of conceptualization to
rate at least a 2. Check marks next to tems on the list of
floor plan criteria and evidence of attempts to address
those criteria (maybe incorrectly) provide sufficient
evidence of conceptualization to rate at leasta 2

It appears the student used RK
primarily to offload isolated
procedural or operational work.

The student did same RK, but the RK did not evidently
support conceptualization of the task. There are no
evident connections between records, and the records are
not explicitly related to elements of the task.

The student did not use RK for
cognition.

There is no RK to support cognition.

1 | Aresponse that has
fundamental mathematical
flaws and leads to Incorrect
answers (or possibly correct
answers, but not for the
correct reasons - like using
perimeter instead of ares but
it happens to work out)

© May or may not provide a correct answer(s) to one or both of the comparisons,
and there is evidence the student used a non-viable strategy for both
comparisons (e g., comparing with something other than area; comparing areas
of encasing rectangles)

© There is no evidence of how the student made comparisons and only one
comparison is answered correctly.

0 | Noresponse or, if answers
only, nothing is correct

© The student did not record any answers st all
orR

® There is no evidence of how the student made comparisons and neither
comparison is answered correctly.

' DO NOT use student work related to Shape A or Shape B in judging correctness of the solution or 8 workable 8pprosch
Shapes A and B are different in the supported and unsupported versions and are not part of the task to be scored.
! “Evidence” can come from student's record keeping or from researcher notes.

; If the student’s written calculations are missing, but their other

records show enough information to bypass the writing down of the calculations their score has the
potential of being a 4, assuming all of the other qualifications of a 4 are present.

! “Purposeful” means that there is evidence to show how records are refated o the task.
7 “Connected” means that there is evidence to show how records are related to one another.
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Figure A6

Background Survey for Students

O
O

O
O

Ooooao Oooonoao

Ooooooano

]

O
O

O
O

Brief Background Survey

1. Do you consider yourself:

Male
Female

Yes
No

3. Do you consider yourself:_ [Select all that apply.]

American Indian or Alaska Native

Aslan

Black or African American

NWative Hawaiian or Other Pacific Islander
White

4. How old are you?

5. What grade are you in?

Grade 6
Grade 7
Grade 8
Grade 9

6. What math class are you in? [Select all that apply.]

Grade 6 Remedial/ Review Mathematics o
Grade 6 Regular Mathematics

Grade 6 Accelerated Mathematics
Grade 7 Remedial/'Review Mathematics
Grade 7 Repular Mathematics

Grade 7 Accelerated Mathematics

OOoOoooan

Other:

Yes
No

8. Have you been in an ESL program in the past?

Yes
No

Please respond to the following questions to help us better understand your background and
math experiences.

2. Do you consider yourself to be of Hispanic or Latino origin?

Grade 8 Remedial/Review Mathematics
Grade 8 Regular Mathematics

Grade 8 Accelerated Mathematics
Pre-Algebra

Algebra 1

Geometry

Algebra I

7. Are you in an English as a Second Language (ESL) program in school?

THANK YOU.
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Appendix B: Results Tables and Equations
Table Bl

Summary of Scores

N 0 1 2 3 4
Correctness Score 168 6 24 26 14 29
EC-RK Score 168 7 14 31 29 19

Equation B1
Eguations for EC-RK Models

Level 1: EC-RK = Intercept + (N1*7 Rectangles + N2*Floor Plan)' + N3*RK Support” + e
Level 2: Intercept = (Grade 8 + Grade 9)' + ML status' + ¢

Nl =Int+r

N2 =Int+r

N3 = Int + ML status’ + r
Note: Items at Level 1, Students at Level 2

Equation B2

Equations for Item Correctness Models

Level 1: Cotrectness = Intercept + (N1*7 Rectangles + N2*Floor Plan)' + N3*EC-RK® + N4*RK
Support’ + e
Level 2: Intercept = (Grade 8 + Grade 9)' + ML status' + r

N1 =Int+r

N2 =Int+r

N3 = Int + ML status’ + r

N4 = Int + ML status’ + r

Note: Items at Level 1, Students at Level 2
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Table B2

Foundational Results for EC-RK as Outcome

Model RK-0
Coeff. ¢ (df)
Level 1
Intercept (GOO) 2.38* 19.33 (52)
7 Rectangles (G10)  -0.64* -4.24 (110)
Floor Plan (G20) -0.41%* -2.71 (110)
Level 2
ML status (GO01) -0.29 -1.10 (52)
Grade 8 (G02) -0.46 -1.57 (52)
Grade 9 (G03) -0.27 -0.76 (52)
Remaining Variance
Level 1 Level 2
0.64 0.64

Table B3

Inclusion of RK Supports Results for EC-RK as Ontcome

Model RK-1 Model RK-2
Coeff.  z(df) Coeff. £(df)
Level 1
Intercept (BO) 3.04* 10.57 (52) 2.30* 16.64 (52)
7 Rectangles (B1) -0.64* -4.24 (109)  -0.62* -4.06 (108)
Floor Plan (B2) -0.41% -2.72 (109)  -0.38* -2.47 (108)
RK Supports (B4) 0.16 1.23 (109) 0.16 1.23 (108)
Level 2
ML status (GO1) -0.29 -1.09 (52) -0.47 -1.59 (52)
Grade 8 (G02) -0.46 -1.57 (52) -0.47 -1.59 (52)
Grade 9 (G03) -0.26 -0.74 (52) -0.26 -0.74 (52)
Interactions
RK Supports*ML status 0.36 1.34 (108)
(G41)
Remaining Variance
Level 1 Level2 Level 1 Level 2
0.64 0.64 0.64 0.63
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Foundational Results for Correctness as Ontcome
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Model C-0
Coeff. ¢ (df)
Level 1
Intercept (GOO) 2.36* 16.82 (52)
7 Rectangles (G10) -0.64* -3.95 (110)
Floor Plan (G20) -0.55 (110)
Level 2
ML status (GO01) -1.65 (52)
Grade 8 (G02) -0.10 (52)
Grade 9 (G03) 0.40 (52)
Remaining Variance
Level 1 Level 2
0.86
Table B5
EC-RK Results for Correctness as Outcome
Model C-1 Model C-2
Coeff. ¢ (df) Coeff. ¢ (df)
Level 1
Intercept (BO) 1.10% 5.23 (52) 1.12* 5.23 (52)
7 Rectangles (B1) -0.30 -1.84 (109) -0.31 -1.86 (108)
Floor Plan (B2) 0.13 0.81 (109) 0.12 0.78 (108)
EC-RK (B3) 0.53* 6.98 (109) 0.52* 6.73 (108)
Level 2
ML status (GO01) -0.34 -1.49 (52) -0.54 -1.34 (52)
Grade 8 (G02) 0.21 0.83 (52) 0.23 0.89 (52)
Grade 9 (G03) 0.30 0.99 (52) 0.34 1.09 (52)
Interactions
EC-RK*ML status (G31) - - 0.09 0.60 (108)
Remaining Variance
Level 1 Level 2 Level 1 Level 2
0.68 0.41 0.69 0.41
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Table B6

Inclusion of RK Supports Results for Correctness as Ontcome

Model C-3 Model C-4
Coeff. ¢ (df) Coeff. ¢ (df)
Level 1
Intercept (BO) 2.36*  15.10 (52) 2.36%  15.23 (52)
7 Rectangles (B1) -0.64*  -3.93 (109)  -0.60*  -3.69 (108)
Floor Plan (B2) -0.09 -0.55 (109)  -0.03 -0.19 (108)
RK Supports (B4) 0.00 -0.01 (109) 0.00 -0.01 (108)
Level 2
ML status (GO1) -0.49 -1.65 (52) -0.82* -2.49 (52)
Grade 8 (G02) -0.03 -0.10 (52) -0.03 -0.10 (52)
Grade 9 (G03) 0.16 0.40 (52) 0.16 0.40 (52)
Interactions
RK  Supports*ML status 0.66* 2.27 (108)
(G41)
Remaining Variance
Level 1 Level 2 Level 1 Level 2
0.75 0.86 0.72 0.84
Table B7

EC-RK and Inclusion of RK Supports Results for Correctness as Outcome

Model C-5 Model C-6
Coeftt. ¢ (df) Coeftt. 7 (df)
Level 1
Intercept (BO) 1.13% 5.22 (52) 1.19% 5.35 (52)
7 Rectangles (B1) -0.30 -1.83 (108) -0.60 -3.69 (100)
Floor Plan (B2) 0.13 0.82 (108) -0.03 -0.19 (100)
EC-RK (B3) 0.54* 7.01 (108) 0.51* 6.62 (100)
RK Supports (B4) -0.09 -0.65 (108) -0.09 -0.68 (100)
Level 2
ML status (GO01) -0.34 -1.49 (52) -0.72 -1.73 (52)
Grade 8 (G02) 0.22 0.84 (52) 0.22 0.85 (52)
Grade 9 (G03) 0.30 0.98 (52) 0.32 1.03 (52)
Interactions
EC-RK*ML status (G31) 0.06 0.43 (100)
RK  Supports*ML  status 0.47 1.65 (1006)
(G41)

Remaining Variance
Level 1 TLevel 2 TLevel 1 TLevel 2

0.69 0.41 0.68 0.41
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