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ABSTRACT 
 
In this pedagogical action research study, we, as post-secondary mathematics teacher educators, 
built on an existing effort to improve pre-service teachers’ mathematical vocabulary understandings 
by intentionally addressing their struggles related to polygonal area formulas. Utilizing cognitive load 
theory and Bruner’s levels of developmental learning, we adapted and refined an existing “Area of 
Polygons” lesson to eliminate extraneous elements and scaffold the introduction of essential 
elements in the context of a cognitively engaging activity. Comparing our resulting lesson 
components to existing literature on polygonal area, we found two main approaches towards 
exploring area of polygons. Both approaches emphasized conservation of polygonal area with one 
focused on the details of attributes and square units and the other focused on comparisons of areas 
of figures. We discuss the implications of these approaches and the use of cognitive load theory in 
tandem with Bruner’s levels for future curriculum redesign. 
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Introduction 
 

We, as post-secondary mathematics teacher educators, often collaboratively consider the 
content that our students, elementary pre-service teachers (PSTs), find difficult across the sequence 
of mathematics courses we teach. As part of a larger study focused on instructor collaboration and 
pedagogical improvements across the course sequence, we found that our PSTs routinely struggle with 
mathematical vocabulary (Bullock et al., 2021). Building off this work and connecting to concepts of 
cognitive load theory (Ayres, 2006; Pass et al., 2003) and Bruner’s levels of developmental learning 
(Bruner, 1986; Reys et al., 2012), the current pedagogical action research study explores our response 
to students’ struggle with polygonal area formulas. The impetus for this study, noticings about 
students’ misconceptions about polygonal area and area formulas, is described below. 

In Math 1385: Foundations of Mathematics II, the second mathematics content course in the 
sequence focused on geometry and measurement, one important topic that students explore is 
polygonal area formulas. In the original version of the “Area of Polygons” lesson, the first author 
spent about an hour carefully guiding students through interactive activities with patty paper to help 
them understand the derivations of the rectangle, parallelogram, triangle, and trapezoid area formulas. 
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At the end of the lesson, she had the students apply their new knowledge by finding the areas of 
“Crazy Shapes,” an activity adapted from Aichele and Wolf (2008, p. 18). An example figure is 
provided in Figure 1. 
 
Figure 1 
 
Crazy Shape (Aichele & Wolf, 2008, p. 18). 
 

 
 

She anticipated that students would divide the large crazy shape into smaller squares, 
rectangles, parallelograms, triangle, or trapezoids, find their areas, then add these areas together to find 
the area of the large crazy shape. However, as she walked around the room, she noticed one student 
was partially dividing the crazy shape into triangles, using the formula 𝑏 × ℎ to find the triangles’ areas. 
Interested in this student’s thought process, the first author initiated the following discussion: 

 
Cory: Why 𝑏 × ℎ for the area of a triangle? 
Student: Because that’s how we find the area of triangle! 
Cory: How does the area of a triangle relate to the area of a parallelogram? 
[Extended silence.] 
Cory: Do you remember that a triangle’s area is always half a parallelogram’s area? 
[Extended silence.] 
Cory: So, what is the area formula for a triangle? 
Student: It’s always base times height. 
 
After teaching the “Area of Polygons” lesson a few more times in other sections of the course, 

the first author noticed similar responses from a number of students. These students seemed to be 
associating area with “base times height” or “length times width” no matter the type of shape. The 
first author’s experiences initiated a series of lesson revisions intended to better enable students to 
grasp and retain an understanding of the connections between polygonal area formulas, specifically 
targeting the !

"
 in the triangle area formula. 

 
Study Background and Guiding Conceptual Framework 
 

In our work with elementary PSTs, our research team, composed of five mathematics teacher 
educators (MTEs), embarked on a multi-year effort to improve learning opportunities for our students 
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using guided notes across the sequence of mathematics courses for future elementary teachers. At our 
Southeastern, public university with a Hispanic Serving Institution (HSI) designation, our student 
population includes 45% first-generation undergraduates and over 75% of the students are employed 
while pursuing their degree. Our PSTs take three required elementary foundations mathematics 
content courses in the mathematics department and one mathematics methods course in the education 
department. Our team, initially consisting of three mathematics faculty and two education faculty, 
began our curriculum improvement efforts in response to observations about students’ struggles that 
we routinely observed semester to semester across these courses. These efforts are summarized in the 
Guided Mathematics Vocabulary (GMaV) Conceptual Framework in which we position students’ 
constructed knowledge at the intersection of an explicit focus on mathematics vocabulary and the use 
of contextualized problems using the curriculum tool of guided notes. See Figure 2 for this 
information. 
 
Figure 2 
 
GMaV Conceptual Framework (Bullock et al., 2021). 
 

 
 

We acknowledge, seek to understand, and account for the mathematical knowledge that our 
students bring to our classrooms as we strive to support students’ construction of knowledge. Specific 
insight into these ongoing curriculum and assessment reform efforts can be read in more detail 
elsewhere (Bullock et al., 2021; Ray et al., 2023).  

As a part of our curriculum and assessment reform work, we focused on key topics or lessons 
that could be refined and adjusted to better support students’ mathematical vocabulary understandings 
and, more broadly, address common areas of misconceptions or difficulty. One specific lesson that 
stood out to us in MATH 1385 was the “Area of Polygons” lesson (hereafter referred to as the 
“lesson”). We wanted our students to “look for and make use of structure” (CCSSI, 2010, p. 8) as they 
make connections between the polygonal area formulas. This Standard for Mathematics Practice 
(SMP) detailed in the Common Core State Standards for Mathematics (CCSSM), emphasizes the 
importance of recognizing and analyzing patterns and structures of mathematical objects. Within the 
context of polygonal area, we often noticed students arriving to MATH 1385 with a memory of area 
involving the multiplication of attributes but lacking a robust conceptual understanding of polygonal 



A PEDAGOGICAL ACTION RESEARCH STUDY     23 

area. Additionally, even after the original lesson, students were not leveraging connections between 
the polygonal area formulas to complete higher level tasks. 
 
Relevant Research Literature 
 
Cognitive Load Theory 

  
As we worked to develop and refine our lesson, we utilized various aspects of cognitive load 

theory. According to cognitive load researchers (Ayres, 2006; Pass et al., 2003), learners have a limited 
working memory, the space in the brain where all conscious cognitive processing occurs. Researchers 
posit that working memory may only be able to handle two to three new ideas, or elements, at a time. 
Thus, the instructor’s goal is to load as little of the students’ working memory space as possible so 
that novel ideas can be learned efficiently. As a student learns the knowledge elements associated with 
a particular mathematical concept, the student may incorporate (and perhaps automate) those 
elements into what is called a schema, or web of ideas. Once a schema is formed in a student’s long-
term memory, their working memory can more easily process related novel ideas and hook them into 
the already existing schema. Ultimately, a student’s schema is so well-learned that it begins to act like 
a single element, thus vastly expanding the processing capability of working memory. 

As a student learns a new mathematics concept, three types of cognitive load may use up the 
space in working memory: a) intrinsic, b) germane, and c) extraneous. Intrinsic load results from the 
interactivity of elements that are essential or intrinsic to understanding a certain mathematical concept. 
For example, to understand the triangle area formula, a student might need to understand the 
elemental definitions of area, triangle, parallelogram, base, height, the multiplication operation, as well 
as the fractional concept of !

"
. These elements interact together to create the triangle area formula. The 

more elements necessary for understanding a concept, the higher the intrinsic load will be. Germane 
load refers to the cognitive activity necessary for a student to form a schema from the necessary 
knowledge elements. An instructor might influence germane load by creating, for example, activities 
that involve productive struggle, thus providing students opportunities to engage deeply with the new 
elements involved in the mathematics concept. Extraneous load involves unnecessary cognitive activity 
resulting from the way the instructor or textbook presents the information. For example, instructional 
materials may misdirect attention to nonessential aspects of the concept or needlessly require learners 
to search for relevant information.  

According to cognitive load theory, the instructor’s goal is to eliminate extraneous load and to 
decrease intrinsic load through carefully timing and scaffolding the introduction of essential elements. 
This in turn frees up a student’s working memory for a higher germane load so that a robust schema 
can be developed. 
 
Bruner’s Levels of Developmental Learning 
 

We posit that one way to scaffold the introduction of intrinsic knowledge elements so as not 
to overload working memory, and also guide the instructor in creating activities that boost an 
appropriate level of germane load, is to incorporate Bruner’s levels of developmental learning. These 
three progressive levels are 1) enactive, 2) iconic, and 3) symbolic (Bruner, 1986; Reys et al., 2012).  At 
the enactive level, students build initial connections between new knowledge elements by participating 
in activities that involve manipulating, constructing, and arranging real-world objects related to the 
concept. At the iconic level, students strengthen the previously formed connections and build further 
connections by participating in activities involving using pictures, images, or other representations of 
the concept. By the time students reach the symbolic level, a schema has been formed and students 
are ready to take part in activities that help them connect their work at the enactive and iconic levels 
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to abstract symbolic representations of the concept. With time, students are able to manipulate and 
use the symbolic representations flexibly and efficiently without referring to their enactive or iconic 
counterparts. This may indicate that their schema has been encapsulated as a single knowledge 
element. 
 
Area of Polygons 
 

In our quest to develop a more effective lesson, we began by consulting the literature. Our 
search revealed an article by Neatrour (1991), which catalogued his methods for demonstrating various 
polygonal area formulas. We were especially interested in his two methods for the area of a triangle. 

For his first method, he began by making a cut parallel to one of the bases of the triangle 
through the midpoint of the triangle’s height (or altitude). See Figure 3 for an illustration.  

 
Figure 3 
 
Neatrour’s (1991) Methods for the Area of a Triangle. 
 

 
 

He then cut the resulting smaller triangle on top into two smaller right triangles. He rotated 
each smaller right triangle by 180o and translated them to the right and left of the bottom piece of the 
original triangle to create a rectangle. In Figure 3, we see that the bases of the original triangle and the 
rectangle are the same, but the height of the rectangle is now half the height of the original triangle. 
Thus, 
 
              𝐴!"#$#%&'	)"#&%$'*=𝐴"*+)&%$'*=𝑏𝑎𝑠𝑒 × !

"
ℎ𝑒𝑖𝑔ℎ𝑡 = !

"
× 𝑏 × ℎ 

 
For his second method, he began by making the same parallel cut as before. However, this time, he 
simply rotated the resulting smaller top triangle 180o and translated it down to create a parallelogram. 
This time, if a student knows the parallelogram area formula, the triangle area formula is forthcoming:  
  

𝐴!"#$#%&'	)"#&%$'* = 𝐴,&"&''*'!$"&- = 𝑏𝑎𝑠𝑒 × !
"
ℎ𝑒𝑖𝑔ℎ𝑡 = !

"
× 𝑏 × ℎ 
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We noticed that Neatrour’s (1991) methods focused both on conserving area and halving 
attributes while at the same time, involved grid squares. While we appreciated his approach, we felt 
our students might become overloaded if these intrinsic knowledge elements were introduced initially 
and simultaneously. Instead, we wanted students to have plenty of room in working memory to 
grapple with the intrinsic idea that a triangle is half a parallelogram. This was the overall relationship 
we wanted them to experience and remember. 
 

Methodology 
 

This study builds on an existing study utilizing a qualitative, grounded theory, pedagogical 
action research design (Norton, 2018), in which MTE faculty collaborated to revise the guided notes 
for mathematics content courses for PSTs. The MTEs in the original study utilized this approach as 
we explored the pedagogical issue of students’ struggles with mathematics vocabulary and 
methodically developed steps to address these issues. This work resulted in the development of the 
GMaV Framework detailed earlier (Bullock et al., 2021, see Figure 2) and led to the development of 
assessment tools for mathematics vocabulary (Ray et al., 2023). 
 
Research Question 
 

In our current study, the authors, two MTEs from the original research team, extended the 
existing pedagogical action research efforts, to address the pedagogical issue of Math 1385 students’ 
struggles related to polygonal area. Building on the larger group’s curriculum revision efforts, we 
sought to find research-based ways to refine and adjust our existing polygonal area lesson to address 
these struggles. Thus, we asked the following research question: How can we utilize cognitive load 
theory and Bruner’s levels of developmental learning (Ayres, 2006; Pass et al., 2003) to adapt an 
existing lesson to address students’ struggles specifically related to triangular area? 
 
Data Collection and Analysis 
 

As part of the larger study, during the Spring 2022 semester, we began reviewing the 24 sets 
of guided notes from Math 1385, along with another MTE from the research team. From this, we 
decided the guided notes for the “Area of Polygons” lesson would be a beneficial candidate for 
revisions. The lesson revisions would be our main source of data. This decision came in response to 
observed students’ struggles with polygonal area lingering after the original lesson was taught. 

To analyze the lesson revisions, we conducted iterative, thematic analyses and case comparison 
(Corbin & Strauss, 2008; Glesne, 2006) during the Fall 2022 semester. Here, we analyzed the iterations 
of the lessons based on the content and nature of the lessons. Then, we compared these iterations to 
one another and to the polygonal area approaches found in the research literature (Neatrour, 1991). 
To summarize our findings, we visually represented the approaches of the polygonal area lessons in 
comparison to one another to explore how these approaches could be viewed through the lenses of 
cognitive load theory and Bruner’s levels of developmental learning. 
 

Findings: Iterations of the “Area of Polygons” Lesson 
 

In our findings, we detail our adjustments and refinements to the lesson, specifically focused 
on the lesson portion involving triangular area. We outline what we found when analyzing a) the lesson 
portion leading up to triangular area, b) the original lesson portion involving triangular area, and c) the 
iterative refinements of the triangular area portion, as informed by cognitive load theory and Bruner’s 
levels of developmental learning. 
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Background: Leading Up to Triangles 
 

In this study, our focus is on our revisions of the triangular area portion of the lesson. 
However, during the lesson’s initial portions leading up to triangle area, students explored pertinent 
vocabulary and other area formulas intrinsic to the triangle area formula. Students began by exploring 
the definitions of base and height and labeling the bases and heights of various sets of congruent 
shapes in different orientations. See Figure 4 for this information. 
 
Figure 4 
 
Exploring Bases and Heights in Different Orientations. 
 

 
 
By providing both visual and verbal representations of this vocabulary at the beginning, we were 
carefully timing the introduction of knowledge elements intrinsic to the triangle area formula so that 
the terms would be available for students to use throughout the lesson. Next, the class studied the 
rectangle, dividing it into an array of smaller squares to better understand why its area formula is base 
times height. From there, the lesson moved to parallelograms where students cut parallelograms into 
two parts along their heights, rearranged the resulting pieces to make a rectangle, and thus, showed 
that area is still just base times height. Here again, we were scaffolding the recall of the intrinsic 
elements of area and parallelogram in preparation for the triangle area formula.  
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Cory’s Original Triangle Area Approach (Version 1.0)  
 

In the original triangle area portion of the lesson, Cory began by giving students six 
congruent isosceles triangles in their guided notes. She asked student to come up with at least three 
strategies a young child might use to find the area of the triangle. In the larger class discussion, 
students shared multiple different approaches. See Figure 5 for details on these approaches. 
 
Figure 5 
 
Student Strategies for the Area of a Triangle (Version 1.0). 
 

 
 

One student split the triangle up into small squares, piecing together left-over parts to make 
full squares. Another student split the triangle into two smaller right triangles and put the two right 
triangles together to make a rectangle with the same area as the original triangle. A third student also 
split the triangle into two right triangles but copied the two right triangles to make a large rectangle 
with area double the original triangle. Surprisingly, a fourth student found the area of a large rectangle 
encompassing the triangle. She then combined the extra areas inside the large rectangle but outside 
the triangle to form a smaller rectangle and subtracted the area of the smaller rectangle from the area 
of the large one. A fifth student was determined to use the triangle area formula, even though Cory 
had requested them not to. 

After this exploration, Cory narrowed the focus to one specific method for finding the area 
of a triangle. This method is illustrated in Figure 6. 
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Figure 6 
 
Original Triangle Area Approach (Version 1.0). 
 

 
 
Students copied a given triangle on a patty paper, rotated it upside down, and traced it next to the 
original triangle to make a parallelogram. The class discussed the fact that the area of the triangle is 
one-half the area of the parallelogram. Students also noticed that the base and height of each triangle 
and resulting parallelogram are the same. Therefore, the class concluded that the formula for the area 
of the triangle must be one-half the formula for the area of a parallelogram (i.e., 𝐴#$%&'()* =

!
"
× 𝑏 × ℎ).  

Cory then had the class practice this method on another triangle. However, as detailed above in Kayla’s 
approach, many students did not seem to retain the importance of the !

"
 in the area of a triangle 

formula. 
After discussing this original version of the lesson, we realized that if we wanted students to 

grasp this concept, we needed to eliminate any extraneous cognitive load and decrease any intrinsic 
load, which we considered unnecessary at this point in the learning process. While not useless, the 
first activity with the six isosceles triangles, as well as the emphasis on conserving the base and height 
in the second activity, could be deemed either extraneous or not intrinsic to the overarching 
importance of the !

"
 in the triangle area formula. We knew we needed to revise this lesson with the 

goal in mind. 
 
Cory’s Approach (Version 2.0) 
 

For our first attempt at a new lesson on triangle area, we created three different parallelograms, 
labeled the base and height in each one, and strategically marked two opposite vertices. See Figure 7 
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for this information. The students were to color and cut out the three parallelograms before class 
began. During the lesson, students followed the instructions below in their small groups: 
 

1. DRAW a diagonal between the two vertices shown. 
2. CUT along the diagonal to create two smaller shapes. 
3. RECORD as many observations as you can about the two smaller shapes. Use 

your geometric vocabulary! 
 
Figure 7 
 
Cory’s Approach (Version 2.0). 
  

 
 

Cory then facilitated a whole class discussion about students’ observations. For each 
parallelogram, as anticipated, the students observed that the two smaller shapes were congruent 
triangles with the same area. They also named the two triangles with the appropriate descriptors 
(equilateral, scalene, and isosceles). Cory also hoped that the strategic marking of the vertices might 
help the students easily notice that the base and height of each parallelogram, and its resulting triangles, 
are the same without causing an intrinsic overload. However, only one student mentioned this. 
Furthermore, she commented that it was difficult to see the height on the third parallelogram since it 
had to be drawn outside the shape. The discussion ended by the class highlighting the relationship 
between the area of a triangle and the area of a parallelogram: No matter the triangle type, a triangle 
is always half a parallelogram. Therefore, the triangle area formula is: 

 
𝐴#$%&'()* = !

"
𝐴+&$&))*),($&- = !

"
× 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 = !

"
× 𝑏 × ℎ 

 
We felt this lesson was an improvement over the previous version because it did a better job 

highlighting the structural relationships between the areas of a triangle and a parallelogram without 
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overloading the students with untimely intrinsic elements. However, although the visuals seemed 
powerful, many students did not appear to deeply engage with the concept. We pondered: Had the 
students developed robust, meaningful, and lasting connections between triangles and parallelograms? 
Had their germane load been increased enough for students to begin construction of a triangle area 
schema in long-term memory? 
 
Cory’s Approach (Version 3.0) 
 
Our next reimagining of the triangle area lesson began by dividing the students into groups of four 
and assigning each group member one of the sets of three congruent triangles in their guided notes. 
Each set contained a different triangle type. Cory asked the students to do the following with their set 
See Figure 8 for an illustration: 
 

1. NAME the triangle with two vocabulary words: Equilateral, Isosceles, Scalene, 
Acute, Right, Obtuse. 

2. COPY the triangle onto patty paper. 
3. ROTATE the patty paper triangle upside down. 
4. TRACE the upside-down triangle next to the original triangle to a create a 4-

sided shape. See if you can do this in 3 different ways! 
5. WRITE “P” next to the 4-sided shapes that are parallelograms. Share your 

work with the others in your group. 
  
Figure 8 
 
Cory’s Approach (Version 3.0) 
 

 
 
After students completed the work for their set, Cory displayed a completed worksheet so everyone 
could see the correct results for all sets. As in the earlier versions, the lesson ended with a discussion 
emphasizing that, no matter the triangle type, the area of a triangle is half the area of a parallelogram, 
along with an opportunity for students to connect this concept to the symbolic formula: 
 
             𝐴#$%&'()* = !

"
	𝐴+&$&))*),($&- = !

"
× 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 = !

"
× 𝑏 × ℎ 

This lesson iteration provided an opportunity for students think more deeply about the 
different ways two congruent triangles could form a parallelogram (an increased germane load). Also, 
we wondered if seeing the numerous 𝑃s covering their worksheets would make a helpful impression 
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(an increased but timely intrinsic load). At the same time, the lesson posed some difficulties. Many 
students struggled to rotate their patty paper triangles 180o, creating kites rather than parallelograms 
(an extraneous load). We wondered what we could do reduce any confusion with the patty paper tool, 
yet still retain the germane problem-solving aspect of the lesson. 
 
 Cory’s Approach (Version 4.0) 
 

Version 4.0 of the triangle area lesson began by dividing the students into groups of four and 
giving each group member a pair of congruent laminated triangles, each pair of a different type. Cory 
asked the students to do the following: 
 

1. Describe your two congruent triangles with two geometric terms: Acute, Right, 
Obtuse, Equilateral, Isosceles, Scalene. 

2. How many different ways can you create a parallelogram with your two congruent 
triangles? 

 
Before sending them off to work, Cory reviewed the definitions of parallelogram and kite, 

making sure students recalled the properties of these shapes. Then, after sufficient individual problem-
solving time, various students shared their findings with the whole class, using their laminated triangles 
to demonstrate the different ways they made a parallelogram. Afterward, the students recorded their 
work using patty paper for their assigned triangle type on a worksheet similar to the one from Version 
3.0. Finally, each group member shared their expertise by recording their work on their group 
members’ worksheets for them. As in previous iterations, the lesson concluded with the full class 
highlighting the fact that a triangle is always half a parallelogram, no matter the triangle type, and by 
connecting this concept to the algebraic formula. 

This fourth lesson iteration seemed to provide four main benefits. First, it scaffolded students’ 
construction of a triangle area schema through Bruner’s levels of developmental learning. In our 
lesson, students began by engaging in a hands-on activity involving laminated triangles, in line with 
Bruner’s level one (enactive). Students next created pictorial views of their findings with patty paper, 
thus transferring their thinking to the pictorial representations detailed in Bruner’s level two (iconic). 
Our lesson concluded with a discussion aimed at connecting the visual concept of a triangle being half 
a parallelogram to the symbolic ½ in the triangle area formula, aligned with Bruner’s level three 
(symbolic). 

Second, our fourth iteration involved a stronger germane load. Students were required to 
problem-solve as they thought deeply about the intrinsic definition of a parallelogram and as they 
utilized their spatial visualization skills to create parallelograms from triangles. 

Third, rather than having Cory share the correct answers as in Version 3.0, this iteration made 
students responsible for their portion of the activity, requiring them to share their expertise with 
others. This gave them further opportunity to strengthen long-term connections within their triangle 
area schema. 

Fourth, the revised lesson focused students on the big idea that the area of the triangle is half 
the area of a parallelogram rather than diverting students’ attention to the details of grid squares and 
attributes (an untimely intrinsic load), which while important, seemed to prevent some students from 
grasping the overall concept. 
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Summarizing Our Findings: Two Approaches Towards Area of Polygons 
 

From the iterations of the triangular portion of the lesson and our comparison to Neatrour’s 
(1991) suggested strategies for students’ exploration, two main approaches towards teaching polygonal 
area emerged. These two approaches emphasized conservation of area of polygons in different ways. 
Neatrour’s approach focused on the details of finding polygonal area, including figure attributes and 
square units, while Cory’s revised approach highlighted the comparisons of areas of figures. These 
two approaches are summarized in the provided visual comparison show in Figure 9, where we see 
the strategies suggested by each approach when transforming between pairs of four different polygons 
– rectangle, parallelogram, triangle, and trapezoid. The arrows in the diagram indicate the two shapes 
involved in the corresponding transformation. Each arrow includes a visual representation of the 
corresponding transformation between the two indicated shapes suggested by each approach. 
 
Figure 9 
 
Visual Comparison of Neatrour’s (1991) and Cory’s Approaches. 
 

 
 

In the visual summary (see Figure 9), Neatrour offers options for considering the relationships 
between area of polygons. For example, Neatrour details multiple pathways for transforming 
trapezoids and triangles into parallelograms or rectangles. Additionally, Neatrour’s suggested strategies 
emphasize figure attributes, such as base and height, and how transforming shapes from one to 
another changes these attributes or repositions these attributes as components of a transformed shape. 
For example, the transformation of a triangle into a parallelogram leads to a parallelogram with the 
same base length as the original triangle but with a vertical height that is half the height of the original 
parallelogram. Additionally, looking across the suggested strategies, Neatrour’s choice to impose 
polygons on a grid visually emphasizes square units and may encourage students to only view area as 
determined by the number of boxes, or units, inside the shape. 

Like Neatrour, in the beginning portion of Cory’s lesson, she highlighted the definitions of 
base and height and square units inside a rectangle. However, her revised portion of the lesson 
involving triangles offers an alternative emphasis. As shown in the visual summary (see Figure 9), Cory 
offers a single pathway for transforming between the four different shapes, from rectangle to 
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parallelogram to triangle to trapezoid and vice versa. Essentially, these strategies build from one area 
formula to the next without using labeled attributes or grid squares. Thus, unlike Neatrour, Cory’s 
revised approach includes fewer choices for transforming between shapes and intentionally highlights 
area comparison as a way for students to make connections between polygonal area formulas. Also, 
by refraining from labeling attributes or using grid squares, Cory’s approach eliminates extra chatter in 
the form of additional detail that may be useful or meaningful for some students but not necessary to 
build up and explicitly connect between the polygonal area formulas. In other words, Cory’s approach 
more readily favors the big idea of area comparison, rather than the details of the polygonal figures. 

In summary, our evolving approaches towards polygonal area eliminated extra detail and 
provided students with a single pathway for building from one shape to the next, thus minimizing 
extraneous load and introducing intrinsic load in a timely fashion, rather than overwhelming working 
memory with multiple pathways. We posit that this approach helped students develop stronger initial 
connections between the polygonal area formulas. We are not suggesting that details of attributes and 
grid squares or the use of multiple and varied approaches are not important. Instead, we propose that 
more comprehensive approaches could perhaps be explored once students have a clear foundational 
understanding of the conceptual connections between area of polygon formulas, or that these 
additional approaches could allow room for differentiation when students exhibit varying levels of 
understanding. 
 

Discussion and Implications 
 

In this study, we explored iterations of an “Area of Polygons” lesson using the lens of cognitive 
load theory. In the process, we became aware that a thoughtful consideration of the layout of our 
lesson in terms of Bruner’s levels of developmental learning helped us better leverage the tenets of 
cognitive load theory. Particularly, we were better able to scaffold students’ construction of a triangle 
area schema by intentionally moving them through the three levels. Moreover, to increase the germane 
load necessary for creating stronger, stable schemas, we increased the problem-solving necessary at 
the enactive and iconic levels. Additionally, at each level, we recognized the need to reduce or eliminate 
extraneous and untimely intrinsic load which was distracting our students from grasping the big idea 
of the lesson. Thus, combining Bruner’s levels with components of cognitive load theory provided us 
frameworks for revising the lesson in a powerful way. 

We posit that these frameworks could be useful for effectively adapting instruction across the 
grade levels and mathematical content to help students create strong schemas around any 
mathematical topic. More broadly, we suggest that these frameworks offer flexibility in considering 
the unique contexts, backgrounds, and needs of learners. For example, if advanced students are ready 
for additional intrinsic load, they may benefit from explorations involving more detailed information 
that could be considered “chatter” for other students. Additionally, these frameworks provide explicit 
language and resources for instructors to improve curriculum materials and learning experiences 
across a wide range of mathematical content. Our study focused specifically on polygonal area, but we 
anticipate many other content areas where students traditionally struggle could also benefit from a 
review using our combined frameworks. In conclusion, cognitive load theory and Bruner’s levels of 
developmental learning proved to be useful lenses for our curriculum redesign efforts. 
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