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ABSTRACT 
 
Physics and mathematics represent closely intertwined fields, wherein physicists employ 
mathematical modeling to address intricate problems. A challenge encountered by physicists 
involves bridging conceptual understanding with mathematical equations, a task that educators can 
facilitate by supporting students in navigating these two realms of comprehension. Mathematical 
modeling has exhibited potential in assisting students in recognizing that the domains of physics 
and mathematics are not insurmountably complex. The present study investigated the capability of 
science preservice teachers (PSTs) enrolled in an introductory physics course to resolve real-life 
physics problems by adhering to the stages of mathematical modeling. Data were gathered through 
the Interdisciplinary Modeling Eliciting Activity, allowing students to collaboratively discuss 
problems and devise solutions. Analysis was executed utilizing the interdisciplinary mathematical 
modeling (IMM) framework. The activity provided an inclusive platform for all students, including 
those who typically remained reticent during classes, to actively participate in group discussions and 
articulate their ideas. Despite the successful navigation of the problem with the guidance of the 
IMM framework, groups encountered challenges in certain tasks such as parsing/grouping and 
generating a context. Overall, the study demonstrated promise in augmenting PSTs' enthusiasm for 
physics and enhancing their comprehension of mathematical models within the discipline. 
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Introduction 
 

Every teacher should possess subject-specific and general competencies for the teaching 
profession, encompassing knowledge, skills, and attitudes to support their development in their 
respective fields. Among the subject-specific competencies applicable to science teachers, scientific, 
technological, and social development competences are essential. The ability to develop students' 
problem-solving skills is considered a crucial competence expected from teachers, particularly science 
educators. Therefore, science teachers are expected to impart awareness about potential solutions to 
their students' daily life problems, which, in turn, necessitates the teachers to possess such skills 
themselves. Mathematical modeling can provide valuable experience in the development of this 
competence. 

From a mathematical perspective, mathematical modeling plays a significant role in generating 
solutions to problems faced in daily life. Generally, mathematical modeling includes two subprocesses: 
developing mathematical solutions and interpreting these mathematical solutions in a real-life context 
(Borromeo-Ferri, 2006; Lesh & Doerr, 2003). Mathematical models are tools that contain abstractly 
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taught mathematical concepts used to explain real-life situations. For example, the trigonometric 
functions used in selecting seats to obtain the best screen view in a cinema are mathematical models. 
Similarly, a watch repairman who notices that the pendulum of a pendulum clock swings slower than 
it should understands concepts such as gravitational acceleration, period, and function, and uses this 
information during repair, which is an example of mathematical models. 

Mathematical modeling is the process of mathematically expressing a real-life situation that 
poses a problem and explaining it using mathematical models (Berry & Houston, 1995). However, 
teaching and learning mathematical modeling can be explained by the formation of different 
understandings beyond this perspective. Modeling can be classified based on its intended use and the 
approaches used to handle mathematical modeling in the classroom. Mathematical modeling can be 
adopted as a tool when used to teach a concept and as an objective when used to foster mathematical 
proficiency (Julie & Mudaly, 2007; Niss et al., 2007). In this study, mathematical modeling is viewed 
as a tool for teaching the concept of linear motion while also serving as an objective to assess student 
competencies in the mathematical component of physics problems. The emphasis is on giving 
students the ability to create mathematical models and develop mathematical modeling competencies. 
Through the modeling activity used in this study, students were expected to accomplish the 
interdisciplinary mathematical modeling cycle. Moreover, as part of this iterative process, they were 
required to develop mathematical models that can be applied to problems involving physics concepts. 
 
Interdisciplinary Mathematical Modelling (IMM) 
 

Mathematical modelling activities require interdisciplinary connections since the problems 
represent real-life situations, which often involve a wealth of complications that require the application 
of various sciences to understand. IMM is a perspective that involves the simultaneous employment 
of multiple disciplines (Dogan et al., 2018). IMM encompasses the development of solutions to real-
life problems through models with the help of both mathematics and science. Within the scope of 
IMM, a wide range of disciplines can be combined, or merely be a combination of two disciplines. 
Figure 1 illustrates the IMM process that involves mathematics and science. 
 
Figure 1 
 
Interdisciplinary Mathematical Modelling (IMM) process (Dogan et al., 2018) 
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Figure 1 illustrates that the IMM process commences in the context of real-life situations. The 
following sections and Table 1 provide a description of each stage. 
 
Table 1 
 
IMM Stages and Example of Expected Outcomes 
 

IMM Stages Example of expected outcomes 

In this step, problem solvers are expected to articulate their 
understanding of the problem, transitioning from the real 
world to the common ground shared by mathematics and 
science. 

They should be able to express key problem details, such 
as the velocity of the second car approaching at 80 km/h 
and the placement of the reflector at a distance of 30 
meters behind the broken vehicle. 

Separation/grouping: In this step, participants should 
associate the concepts involved in the problem with the 
relevant disciplines, mathematics and physics, and grasp 
them through mental processing. 

They should be able to apply equations such as x=vt and 
represent them through graphs. 

Context building: Problem-solvers should observe the 
interconnections between concepts, form linkages, and 
make necessary associations. This stage may not occur 
simultaneously throughout the entire problem-solving 
process. 

At this stage, problem solvers should be able to plan to 
draw a velocity-time graph by re-associating categorized 
concepts with individual disciplines such as mathematics 
and physics. 

Internal modelling: Problem solvers should organize 
available data, produce ideas and assumptions, and engage 
in required planning to lead them towards a solution. 

They should be able to make assumptions, such as that the 
area under the velocity-time graph can help calculate the 
distance traveled by the vehicle. 

Model building: At this stage, the internal model is 
translated into a mathematical model by formulating the 
problem in mathematical terms and constructing a model 
that leads to the solution. 

Problem solvers are expected to produce the solution 
using the velocity-time graph as a mathematical model. 

Model solving: Once the model is established, the problem 
solver proceeds with the mathematical solution of the 
model with the help of his previous mathematical 
knowledge. Even though this stage mostly occurs in the 
domain of mathematics, given the extensive use of 
mathematical structures and operations involved, the 
problem solver takes advantage of scientific knowledge as 
well. 

At this stage, problem solvers are expected to apply their 
mathematical knowledge to calculate the area of the 
triangle and rectangle to solve the problem. 

Transformation: At this stage, the problem solvers think 
about the real-life consequences of the solution developed 
through the application of the model.  

At this stage, problem solvers are expected to be able to 
think about the solution by using the velocity-time graph, 
which is acceptable for similar situations in real life, etc. 

Evaluation: This stage entails testing the real-life 
applicability and accuracy of the solution. 

At this stage, problem solvers are expected to assess the 
solution using the velocity-time graph to determine its 
validity for similar situations. 

Reporting: When the model is deemed usable in real-life, a 
report is prepared detailing the mathematical model and its 
components. 

At this stage, problem solvers are expected to be able to 
decide the solution by discussing the velocity-time graph 
that is usable in a real-life situation, reporting the details of 
the mathematical model, etc. 
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According to Dogan et al. (2018), the theoretical framework of the IMM process allows for a 
flexible transition between its stages. For example, an individual who cannot find a real-life equivalent 
to the developed model, or realizes that it cannot be applied to real-life, can still move from the 
transformation or evaluation stage to the model building stage or to higher-level stages such as 
understanding the problem. The degree of flexibility provided also means that some stages can be 
skipped for progress to be achieved. For instance, one can proceed directly to the mental model 
building stage without separating or grouping the concepts with reference to individual disciplines in 
the grasping the problem stage. 

IMM can be viewed as an effective means of establishing interdisciplinary connections. In fact, 
a study conducted with mathematics and science teachers found that activities structured around IMM 
enabled the coverage of different disciplines simultaneously (Gurbuz et al., 2018). Additionally, the 
same study observed that mathematical modeling was appropriate for associating various disciplines 
(English, 2015), and the IMM approach that emerged from this feature suggests that the standards 
belonging to different disciplines can be taught together (Dogan et al., 2018). 
 
Interdisciplinary Component of the IMM: In the Context of Physics and Mathematics 
 

Mathematics is a discipline that has extensive associations with a wide range of fields, making 
it a useful tool for various sciences. Among these, physics is a field where mathematics is used most 
extensively (Redish & Gupta, 2010). While some topics in physics are taught with less emphasis on 
mathematics, acceleration is an example of a topic that is embedded within mathematical formulations 
(Basson, 2002). 

Teaching various disciplines in connection with each other has been shown to help learners 
develop solutions more easily for the problems they face in daily life (Carrejo & Marshall, 2007; Prins 
et al., 2009). Additionally, courses emphasizing the connections between various disciplines are 
thought to pique students' interest and motivation (Dervisoglu & Soran, 2003; Lyublinskaya, 2006; 
Ogunsola-Bandele, 1996). Several studies have highlighted the importance of teaching mathematics 
and physics in conjunction, providing a more solid foundation for concepts and promoting effective 
learning (Erickson, 2006; Munier & Merle, 2009; Redish & Gupta, 2010). To this end, the literature is 
rich in studies attesting to the effective use of physics models in teaching mathematics and geometry, 
which can support meaningful learning by rendering abstract concepts more understandable (Bing & 
Redish, 2009; Munier & Merle, 2009). Conversely, using mathematical models to teach physics 
concepts has been found to produce positive results, such as developing positive attitudes towards 
physics classes and facilitating the learning of challenging concepts (Marshall & Carrejo, 2008; 
Takaoglu, 2015). 

However, some topics in physics are related to real-life cases, and students may already have 
an accurate or inaccurate understanding of these concepts. These concepts may be easier or harder to 
teach, depending on students' existing knowledge and misconceptions. Motion is an example of a 
topic that poses such challenges (Aksit & Wiebe, 2020; Bani-Salameh, 2016). Students may experience 
difficulties understanding concepts such as velocity, position, and acceleration, which can be 
misleadingly similar but essentially different (Bani-Salameh, 2016). Additionally, interpreting negative 
and positive acceleration, along with drawing and interpreting velocity-time and position-time graphs, 
are among the challenges that students may encounter (Goldberg & Anderson, 1989; McDermott et 
al., 1987; Nemirovsky & Rubin, 1992; Pendrill & Ouattara, 2017). The literature has addressed these 
issues, providing insights into how to teach such concepts more effectively. 

Certain fundamental concepts of classical mechanics serve as the cornerstone of science and 
physics courses taught in primary and secondary schools (Basson, 2002), with their implications being 
noticeable in everyday life (Singh & Schunn, 2009). Linear motion and acceleration are among these 
concepts. As these concepts have implications in everyday life, students often hold normative and/or 
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non-normative ideas about them (Clement, 1982; DiSessa, 1982; Halloun & Hestenes, 1985). Non-
normative ideas, based on common sense rather than scientific principles, cause confusion and impede 
the learning experience for students, particularly when it comes to the concepts of acceleration and 
velocity. Therefore, during the teaching process, concepts like acceleration should be presented in 
real-life contexts through clear problem situations and with clear mathematical foundations. Based on 
this view, the current study proposes a novel approach to teaching physics concepts (particularly linear 
motion and acceleration) related to real-life cases using mathematical modeling, as opposed to 
conventional approaches to teaching physics. 

Most discussions on the positive effects of interdisciplinary associations reference the 
significant obstacles teachers face in interdisciplinary teaching processes (Morrison & McDuffie, 2009; 
Weinberg & Sample McMeeking, 2017). The lack of adequate resources or materials, or the teachers’ 
lack of experience in establishing associations between their own discipline and other disciplines, 
forces them to focus primarily on their trained discipline (Bybee, 2010). Additionally, students often 
find the integration of multiple disciplines to be complicated and overwhelming (Dervisoglu & Soran, 
2003; Ogunsola-Bandele, 1996). Therefore, teachers require a new, simpler method that can be applied 
in the context of interdisciplinary integrations. Whereas students would appreciate a new approach to 
aid in understanding concepts and making the learning process enjoyable through the use of various 
disciplines in an integrated and interconnected manner. In this regard, the use of mathematical 
modeling to teach challenging physics concepts stands out as a potentially helpful method. 
 

Research Purpose and Questions 
 

In light of current research, it can be concluded that the use of IMM clearly aids in increasing 
competence and knowledge levels across all disciplines by fostering comprehensive interdisciplinary 
connections. Previous studies conducted with science preservice teachers (PSTs) have indicated that 
physics courses are often taught in a discipline-based manner with relatively low levels of success 
(Michaluk et al., 2018; Pollock, 2006). Thus, the present study aims to investigate problem-solving 
processes through an IMM activity requiring the combined use of mathematics and physics by PSTs 
enrolled in the Science Teaching Program. 

The evaluation of PSTs’ modelling skills applicable to problem-solving processes is critical in 
terms of establishing their subject-specific competencies and problem-solving skills necessary for 
teaching in real classrooms. Developing mathematical modelling abilities in PSTs is essential since they 
will eventually teach science from an interdisciplinary perspective to middle school students. 
Moreover, instilling in-service and PSTs with sufficient mathematical modelling abilities, as well as 
executing modelling assignments in the classroom, is essential for the efficient integration of 
mathematical modelling into science education programs at all levels. 

Therefore, this study focuses on PSTs' completion of an IMM task. The research questions guiding 
this study are: 

1. To what extent do science PSTs solve a real-life physics problem by following the stages of 
mathematical modelling? 

2. Which stages of IMM pose the most significant challenges for PSTs to complete during the 
mathematical modelling process? 
 

Methodology 
 
Research Method 
 

The present study utilized a collective case study research approach, which is a qualitative 
research methodology that allows for an in-depth review of a pre-defined system. According to 
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Creswell (2007), case studies are typically conducted on a single person or a group of people, an event, 
or other entity that is less well-defined than a single person. In this study, we examined the real-life 
physics problem-solving processes of two groups of science PSTs and identified how they progressed 
through the stages of interdisciplinary mathematical modelling. To achieve this goal, we conducted an 
articulated analysis of each case's discussions and decisions. Therefore, we designed our data collection 
procedure based on multiple case studies. 

 
Participants 
 

The study group for this research comprises six PSTs, consisting of four females and two 
males. These PSTs were enrolled in an introductory physics course, which forms part of a science 
teaching program offered at a university in Türkiye. As the study was extracurricular, participants were 
entirely voluntary. This study particularly focused on science PSTs, as they constitute a fundamental 
element of the learning environment. The research aimed to examine the problem-solving process of 
PSTs, whereby their interpretation of the problem setting was influenced by real-world information. 
PSTs are required to acquire mathematical modelling skills, since they will eventually teach science 
from an interdisciplinary perspective to middle school students. 

 
Context of The Study 
 

The PSTs in the study were divided into two groups based on their performance levels on the 
midterm exam scores. This was done to ensure that the students were evenly distributed among the 
groups with respect to their high, medium, and low scores. Since most of the questions on the midterm 
exam were related to linear motion and acceleration, the scores served as a reliable indicator of their 
preparedness. Previous research studies have emphasized the importance of group work in the 
effective implementation of mathematical modelling activities (Antonius et al., 2007; Erbas et al., 
2016). Therefore, the present study was designed to incorporate a group activity centered around 
modelling, which required the participants to work collaboratively. 

 
The Practice Exercise 
 

Before commencing the modeling activity, the participants received an introduction to 
mathematical modeling. To enhance their understanding of the process, the Water Tank activity 
designed by Erbas et al. (2016) was implemented, encompassing various physics concepts. In this 
activity, the pre-service teachers (PSTs) collaborated in groups to formulate a mathematical model 
addressing a problem related to creating an altitude-volume graph. This graph aimed to assist in 
developing an animation for three differently shaped water tanks. The participants were tasked with 
utilizing mathematical knowledge, including functions, derivatives, and graphical representation. 

Engaging in this mathematical modeling practice facilitated communication within the groups 
and provided the participants with an experiential understanding of how to navigate through the stages 
of the Instructional Model for Mathematics (IMM). Following the allocation of adequate time to the 
PSTs, we conducted discussions with all groups, outlining the tasks required for each step of the Water 
Tank exercise and demonstrating approaches to the various phases. 

 
The IMM Activity 
 

After ensuring the participants' comprehension of mathematical modeling strategies, we 
introduced the Braking Distance of a Car activity developed by Erbas et al. (2016) to assess their group 
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discussions and problem-solving strategies for addressing a real-life problem. This activity 
encapsulates a real-world context of linear motion as a physics concept and linear functions as a 
mathematical context. To derive a solution for the activity, pre-service teachers (PSTs) were required 
to possess a comprehensive understanding of various skills, including the analysis of linear motion, 
the interpretation of the velocity-time graph, the determination of the quantity of motion and 
acceleration, and the application of mathematically correct operations throughout the process. 

 
Data Collection Instruments and Process 
 

To gather data, we encouraged the participants to explain their ideas and express their opinions 
aloud while working on a small whiteboard and worksheet. The worksheets were designed based on 
the steps of IMM related to the activity, and the PSTs were required to explicitly describe and justify 
the answers they generated at each step of their worksheets. The group conversations were recorded 
using both sound recorders and video cameras. Our data consisted of their work on the worksheet 
and whiteboard solutions, as well as their open discussions. 

The activity lasted approximately 45 minutes, and the researchers visited each group every five 
minutes to observe their group work and discussions. If groups had questions about the stages or the 
problem, the researchers guided them to find the answer on their own. After completing all the stages, 
the groups were given five minutes to present their solutions and answer questions from other groups. 
Finally, the discussions between the groups were followed by the presentation of the formal solution 
to the problem given by the researchers. The process flow for the modeling activity is presented in 
Figure 2. 
 
Figure 2 
 
Process Flow Chart for IMM Activity 

Data Analysis 
We conducted a content analysis of the data collected from worksheets, audio recordings, and 

video recordings in this study. Content analysis is a scientific method for examining communication 
content by analyzing the meaning, circumstances, and intentions expressed in messages. To effectively 
conduct content analysis, it is necessary to narrow down the data to concepts that define the problem 
under study (Elo & Kyngäs, 2008). The first step in our study was to transcribe the data obtained from 
video and audio recordings (Berelson, 1952).  

Subsequently, two researchers independently read all the data and attempted to comprehend 
the process as a whole. Following this, the researchers analyzed the students’ worksheets using the 
IMM stages presented in Figure 1. The data were analyzed and categorized according to the individual 
stages of the IMM framework. Our analysis focused on revealing how each group’s discussion and 
the mathematical model development process evolved in each stage. 

After the initial individual analysis, the two researchers discussed the coding of the content 
until 80% of their codes were in agreement. Quotations from the solutions developed by the groups 
and the remarks they made are presented below to support the results of the analysis. Additionally, 
images are included to reinforce the presentation of the findings. 
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Findings 
 

This section furnishes an analysis of the process undergone by participants during the Braking 
Distance activity. It delineates the process of each group individually, taking into account the stages 
inherent in the IMM (Interactive Multimedia Module) process. To streamline this section, each 
participating Preservice Teacher (PST) has been identified with a code number signifying both the 
group number and the order of the students within the group. For example, the second member of 
group 1 is denoted by the code number G1S2. 
 
The IMM Process of Group 1 Through the “Braking Distance of a Car” Activity 
 

This section presents a detailed analysis of the problem-solving process of Group 1, which is 
broken down into stages based on the IMM process. The participating PSTs were identified by a code 
number that denotes the group number and the order of the students in the group. For instance, the 
2nd member of Group 1 is referred to as G1S2. 

The first stage of the IMM process is Understanding the Problem, and Group 1 commenced 
this stage by reading and interpreting the problem. During this process,  
 

G1S1: … I call it nonsense [refers to the second drivers’ claim]! There are no visible tire marks 
on the road. And the surveillance does not allow us to see the point where the second car hit the 
brakes. But we are still expected to shed some light on how the accident happened. 

 
The statement "I call it nonsense!" suggests that the student does not agree with the second 

driver's statement. Later on, in the Transformation stage for Group 1, the same student made another 
statement that indicated a generalization based on an incorrect piece of knowledge from their daily 
life. However, the other members of the group did not raise any objections regarding this point. 

Following the initial statement, the group proceeded to draw a visual representation of the 
problem's provided input, as depicted in Figure 3. This visual representation helped the group 
members to understand the problem more clearly and aided them in formulating a solution. 
 
Figure 3 
 
Group 1 Created a Model of the Drawing to Assist Grasping the Challenge.  
 

 
 

During the conversation that ensued while creating the drawing, the group members 
asserted that the second car was approaching at a velocity of 80 km/h and that the reflector was 
positioned 30 meters behind the broken-down car. They further claimed that the second car 
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noticed the reflector at a distance of 120 meters from it, but there were no tire marks on the 
road. It is apparent that the group misinterpreted the visibility distance, mistaking it for the 
distance from the broken car instead of the reflector, which resulted in an incorrect estimation 
of the braking distance (120 m). Despite the idea originating from G1S1, none of the other 
group members voiced any objections and accepted the notion. Apart from this 
misinterpretation, Group 1 did not have any further issues in the "Understanding the Problem" 
stage. The remainder of the conversation held by Group 1 is presented below. 

 
G1S1: The second driver claims to have hit the brakes as soon as he saw the scene. But that is only 

his statement. That statement can be wrong as well. 
G1S2: If he hit the brakes, the car would have stopped anyway. 
G1S1: But he couldn’t stop. And also, there are no tire (brake) marks on the pavement. 
G1S3: We can calculate the change in velocity at 2-second intervals. 
G1S2: The change in velocity is already apparent on the table. 

 
The presented case highlights the importance of accurately understanding the problem 

to come up with an accurate solution. However, the group's prejudices towards the second 
driver's statements as inaccurate still persisted. 
 
Separation/Grouping 

 
This stage required the group members to associate the concepts involved in the 

problem with the disciplines of mathematics and physics. An excerpt of the conversation that 
took place during this stage is presented below. 

 
G1S1: We can use the formula x=vt. We can calculate it at 2-second intervals. In other words, we 

will increase the time in 2-second increments. 
G1S3: Wouldn’t we have different results then? Shouldn’t we be drawing a graph? 
G1S3: I guess so. What would the slope of the graph represent? Area under the line? 
G1S1: This velocity-time graph... But the velocity is not increasing in a uniform linear manner. 

G1S3: It did not increase because the driver hit the brakes. 
G1S1: Multiplying v by t would yield x, which is the distance. Multiplying the base by the height 

gives us the area of the triangle... So, what does it mean by stating 2-second intervals? 
 

At this stage, Group 1 was able to spot the method of multiplying velocity and time to calculate 
the distance the vehicle covered before it stopped and to calculate the distance with reference to the 
area under the velocity-time graph. However, they were still unable to accurately interpret the data 
provided on the velocity-time table with 2-second intervals and realize that it actually represented 
linear motion. As they found out, by multiplying the velocity by time during the IMM activity, they 
were able to spot the complementary aspects of the formula associated with both mathematics and 
physics.  

Moreover, while interpreting the graph, they were able to step into the domain of mathematics 
with reference to concepts such as the area of a triangle. However, in the separation/grouping stage, 
Group 1 failed to assign meaning to the uniform-linear motion concept in the field of physics. This 
observation may attest to their inability to establish adequate associations between the concepts 
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involved in the problem and the relevant disciplines, as well as their failure to complete the 
separation/grouping stage.  
 
Context Building 
 

Group 1 was observed to associate the relevant concepts with the applicable discipline but 
failed to group the linear motion in the previous stage. In the subsequent stages of the process, Group 
1 embraced the idea of drawing a velocity-time graph through the re-association of the concepts they 
categorized with respect to individual disciplines (mathematics vs. physics). See Figure 4 for this 
information.  
 
Figure 4 
 
Velocity-time graph by Group 1 
 

 
 
This is a testament to moving to the internal model-building stage. For example, there were no explicit 
references to the phase of identifying the context in Group 1's interactions. Although Group 1 
evaluated the data on the problem in the context of two separate disciplines in the separation/grouping 
stage, they moved on to the next stage without interpreting the data they obtained at this stage in the 
context of the common field of both disciplines. 
 
Internal Model Building 
 

Regarding this stage, Group 1 made mistaken assumptions early in the process. As they 
interpreted the data available, they were observed to embrace a mistaken perspective built around the 
maxim "you are to blame as you did not hit the brakes", after reading the statement by the second driver, 
who said he was unable to stop even though he hit the brakes as soon as he saw the reflector. However, 
later on, through a better analysis of the data presented in the problem, the group arrived at the idea 
to draw a velocity-time graph to calculate the braking distance of the vehicle. In doing so, they were 
able to come up with an accurate representation of the straight linear movement as well as calculate 
the distance covered by the vehicle by calculating the area under the velocity-time graph. 
 
Model Building 
 

The graph is the mathematical form corresponding to the model that Group 1 constructed in 
their minds with respect to the movement of the vehicle. In other words, at this stage, the solution 
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will be produced by using the velocity-time graph as a mathematical model. As shown in Figure 5, the 
group has apparently developed the x=vt formula to present the area below the graph with a view to 
calculating the distance as another mathematical model application. 
 
Figure 5 
 
Solution by Group 1 
 

 
 

Both models are accurate and could be used in the solution of the present problem. At this 
stage, Group 1 has achieved success by using suitable models for the problem. However, even though 
Group 1 came up with the correct models, they included data items with different units in the same 
calculation. For instance, the y-axis on the graph shown in the image shows the velocity, while the x-
axis represents time. Yet, the data shown on the x-axis is in seconds, while the data shown on the y-
axis is presented in km/h. And doing so led to an inaccurate solution. As the deceleration of the 
second vehicle is presented on a time scale of seconds, they should have used m/s as the unit of 
velocity, rather than km/h as presented in the problem and applied the necessary conversion. 
 
Model Solving 
 

A glance at the solution presented in Figure 5 and the dialogue recited above reveals that 
Group 1 came up with the correct model (a velocity-time graph) and used their mathematical 
knowledge about the calculation of the area of the triangle and the rectangle to solve the problem. 
The transcript of the dialogue that Group 1 had on the way towards a solution is presented below. 

 
G1S3: [Once the graph was drawn, let’s calculate the area below the graph.] And then we 

calculate the distance covered. 
G1S1: Then we should multiply 75 by 12 and divide the result by 2 [trying to come up with a solution 

based on the area of the triangle]. 
G1S3: No, see, this is a rectangle. 
G1S1: Actually, it’s a trapezoid. Take a look here! Bottom and top... Bottom plus the top... 
G1S3: I don’t see why you are trying so hard. Divide the graph into two. Make this section a rectangle. And 

calculate the area of the triangle here. 
G1S1: That is one way to go. The trapezoid provides an even more direct route. 75 times 2 equals 150 here. 

And this part is 75 times 10, divided by 2. 
G1S2: So it’s 375? 
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During the discussions within the group, G1S1 stated that the graph looked like a trapezoid. 
Yet, it is noteworthy that G1S3 insisted on going with the calculation of the area of the rectangle and 
the triangle since she said that calculating the area of the trapezoid was difficult. Based on this 
statement, we can reach the conclusion that the students had adequate knowledge of rather 
conventional forms, such as triangles and rectangles, but did not know how to calculate the area of a 
trapezoid and they were able to associate the graphical model with a mathematical model to interpret 
linear motion. Additionally, when we look at the graph produced by Group 1, it reveals that the 
velocity was expressed in km/h and the required conversion was not applied. Therefore, the solution 
they came up with was incorrect, even though the models they developed were correct. 
 
Transformation 
 

At this stage, Group 1 started to relate the real-life consequences of the solution developed 
via the model. Group 1 had the following dialogue regarding this stage: 

 
G1S1: So, if the distance is 525 meters, what this guy says is not accurate. 525 minus 150 equals 375 

meters. So, the driver noticed the other car and hit the brakes 375 meters before the vehicle. Had he 
really done so, why do we have this gap of 150 meters? So, looking at this, we understand that he did 
not hit the brakes as soon as he saw the car. The distance is 525 meters. 

G1S3: Maybe it is the driver of the first car who is not providing the correct information. How do you know 
that? 

G1S1: That man did not engage in any action. All he did was stop on the road. And he placed that thing 
as a safety measure. 

G1S2: In any case, the car that hits the other one, rather than the one that had stopped, is always deemed 
the faulty party. 

 
According to the results Group 1 reached through the interpretation of the incorrect solution 

they came up with, they commented that the driver of the second car is to blame. So, when they began 
to think about the real-life consequences of the solution they developed, G1S2 came up with the 
comment, "In any case, the car that hits the other one, rather than the one that has stopped, is deemed the faulty 
party". This can be considered an incomplete assessment of the real-life picture. According to the 
traffic rules, that comment can be applied only in cases where certain other requirements are met. 
Furthermore, the same student voiced the view that a car that hits another one from behind would 
always be considered the guilty party. G1S3, in turn, came up with the comment that the driver of the 
second car did not know how to drive the car as the actual reason for the accident in the real-life 
context. Such comments suggest that Group 1 failed at this stage. 
 
Evaluation 
 

Group 1 had the most extensive discussions among other groups during the evaluation stage. 
They began with a quick return to the "understanding the problem" stage. They had the following 
conversation regarding that stage: 
 

G1S1: Are we being asked how many seconds have passed? Are we supposed to find the second in which he 
applied the brakes? 

G1S3: We are going into a loop now. 
G1S3: The question is, at what point did he hit the brakes at this 150-meter distance? We just calculated 

the distance... 
G1S2: We calculated the distance he saw the reflector at. 
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G1S1: I’ve got it here. The distance between the two vehicles when this one applied the brakes. It is shown in 
the camera footage. The distance from the time of hitting the brakes. Got it? 

G1S3: Nope.  I still don’t get it. 
 

Based on the preceding conversation, it is apparent that G1S3 encountered difficulties in 
comprehending the problem. Conversely, G1S1 made concerted efforts to decode the input provided 
in the problem to aid the other student's understanding. Eventually, G1S3 expressed comprehension 
by stating, "I see." Subsequently, the group members deliberated on the solutions they formulated 
during the problem-solving phase. However, the group failed to reach a consensus and resumed 
working on the solution. Furthermore, the group members employed mathematical elements based 
on disparate units (km/h vs m/s) in the same calculation. Although they arrived at a mathematically 
correct solution due to a fortuitous occurrence, they were able to make the correct determination. At 
this stage, they abandoned their initial belief that the second vehicle was at fault and concluded that 
the car that came to a stop on the road was responsible. 
 
The Mathematical Modelling Process of Group 2 Through the “Braking Distance of a Car” 
Activity 
 

In this section, we closely looked through the problem-solving process of Group 2 by breaking 
down the whole group work with reference to the IMM process. 

 
Understanding the Problem 
 

In this stage, Group 2 tried to interpret the problem through the following statements: 
 

G2S1: The broken vehicle was hit by another vehicle, even though the latter applied the brakes. Furthermore, 
the velocity was falling at 15 km/h every two seconds. 

G2S2: We need to find out the distance at which the second car hit the brakes. 
 

In its bid to understand the problem, Group 2 did not make sufficient references to any other 
data provided in the problem. This observation suggests that the requirements applicable to the 
solution of the problem were expressed in an incomplete form by Group 2. The PSTs were, arguably, 
unable to meet the required level of competence for this first stage of the problem-solving process. 
 
Internal Model Building 
 

Group 2 did not engage in any acts applicable to the separation/grouping and context building 
stages. They skipped these stages and moved on directly to the internal model-building stage. At this 
stage, the PSTs were expected to organize the data they had with respect to the problem, come up 
with assumptions regarding the solution, and clearly express what was provided and required for the 
problem. The dialogue regarding this stage is transcribed below. 
 

G2S2: Let’s write the input we are provided. We have the table here, and we are told that the car hit the 
brakes at some distance, and we are also provided with the velocity of the vehicle. I mean, we have the 
velocity-time data for the vehicle that hits the other one. We know that its initial velocity was 80 
km/h. 

G2S1: We should also note that its velocity fell by 15 km/h every 2 seconds after hitting the brakes. 
 

Group 2 was successful in naming one of the required variables with a specific reference to 
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the velocity and time data. Nevertheless, they still fell short of the requirements by failing to come up 
with any assumptions. Group 2 accurately expressed the requirements but still failed to establish a 
connection between the data that was provided and the data that was required. Therefore, Group 2 
cannot be considered the most effective at this stage. 
 
Model Building 
 

At this stage, Group 2 opted for a velocity-time graph to help with the solution of the problem. 
See Figure 6 for the graph that Group 2 produced. 
 
Figure 6 
 
The Mathematical Model that Group 2 Produced to Help With the Solution of the Problem 
 

 
 

Upon examination of Figure 6, it is evident that Group 2 opted to employ a graph as a 
mathematical model, specifically a velocity-time graph for the second car. Although the selected 
mathematical models were deemed appropriate for the task at hand, they were constructed using an 
erroneous approach to the data. Notably, the data on the x-axis was presented in seconds, while the 
data on the y-axis was expressed in km/h. Additionally, this phase marked the first time that the PSTs 
referred to linear motion after constructing the graph. Following this, the group proceeded to solve 
the model and derived the subsequent solution, which was based on the x=vt formula. See Figure 7 
for this information.  
 
Figure 7 
 
Solution by Group 2 
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The solution by Group 2 contains the accurate statement that "the area below the velocity-time graph 
always represents the distance covered." As they solved the problem, Group 2 employed the formula to 
calculate the area of triangles and rectangles and determined the area under the velocity-time graph. 
However, because the PSTs did not convert the km/h and m/s for uniformity in units while 
calculating the distance, they obtained the incorrect response. 
 
Transformation 
 

At this stage, G2S1 voiced her opinion, ascribing the fault in the accident to the vehicle that 
hit the broken one. Her group mates also affirmed that view, and embraced the idea that the vehicle 
that hit the other from behind was at fault. However, this view was incorrect. As they later interpreted 
their mathematical solutions in a real-life context, they said, "We saw that the vehicle decelerated smoothly 
after hitting the brakes. In daily life, we move with a given velocity, even if all we do is walk. And the distance we cover 
is a function of our velocity and the time we spend. So, in order to calculate the distance, we covered, we need to multiply 
the velocity with the time." Here, it is evident that the PSTs have been interpreting the models they used 
rather than the mathematical solution they produced. One can argue that if they really focused on 
interpreting the mathematical solution and the party was at fault, they could have noticed the 
shortcomings of their solution. 
 
Evaluation 
 

At this stage, Group 2 said, "We don’t think we have been mistaken. Calculations about actual real-life 
cases also follow this route" claiming that the solution they developed would lead to accurate results in real 
life as well. However, they did not engage in a discussion of the real-life applications of this case. 
 

Conclusions and Discussion 
 

Linear motion, a foundational topic in physics, is typically instructed using traditional methods 
emphasizing formulas (Ropii et al., 2019). Unfortunately, this approach often results in the rote 
memorization of concepts and formulas, hindering meaningful learning and comprehension of the 
underlying principles (Reif, 1995). In this study, our objective was to address the challenges faced by 
students in a teacher education program taking an introductory physics course in grasping motion 
concepts and developing a mathematical understanding of physics. To achieve this goal, we employed 
an Interactive Multimedia (IMM) activity to analyze students' problem-solving processes and establish 
connections to real-life contexts. 

Our focus on Pre-Service Teachers (PSTs) was twofold. Firstly, as future educators, they need 
to cultivate mathematical modeling skills to teach science from an interdisciplinary perspective. 
Secondly, many students perform poorly on exams due to a lack of understanding of fundamental 
concepts in physics and mathematics (Teodoro & Neves, 2011). Therefore, teaching physics concepts 
alongside their mathematical components has become increasingly important, particularly at the 
secondary level. 

Upon analyzing the data based on the IMM stages, we observed a variety of common and 
unique issues at each stage. During the understanding problem stage, students frequently relied on their 
real-life experiences and common-sense knowledge to attribute meaning to the problem, resulting in 
misconceptions. This phenomenon is not uncommon, as physics concepts encountered in daily life 
can lead to non-normative ideas or models (Clement, 1982; DiSessa, 1982; Halloun & Hestenes, 1985). 
However, students should develop a scientific understanding of the problem and establish a 
connection with physics, rather than relying on preconceived notions. 
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Furthermore, existing misconceptions of linear motion among students impact their 
interpretation of the problem and, consequently, their ability to solve it. Motion, being a topic closely 
associated with students' preconceptions based on real-life experiences, is an easier topic to teach but 
also poses challenges in avoiding misconceptions (Bani-Salameh, 2016). Overall, our findings suggest 
that students require sufficient experience to interpret data realistically, highlighting the importance of 
teaching physics concepts in conjunction with their mathematical components. 

In the separation/grouping stage, difficulties were observed among pre-service teachers (PSTs) 
in effectively linking mathematical and physical concepts within the context of the problem with their 
respective disciplines. Those who faced challenges in comprehending linear motion during the initial 
stages of problem understanding also encountered difficulties in connecting this idea with physics and 
categorization. However, some students did not explicitly reference this stage during the process. The 
accentuation of certain stages in the Integrating Mathematics and Physics (IMM) process may be 
attributed to insufficient experience within the study group. The third stage of the IMM process, 
context building, did not overtly occur in all groups, possibly due to the ineffective implementation 
of the preceding separation/grouping stage. 

Gurbuz et al. (2018) reported that the separation/grouping and context-building stages were 
not explicitly performed by their participants, as they were experts in the physics topic and 
collaborated effectively. However, it cannot be conclusively asserted that the same reason led to the 
present study's participants bypassing these two stages. According to Chi et al. (1981), novices tend to 
categorize physics problems based on surface aspects, while professionals categorize them based on 
the physics ideas needed to solve them. Therefore, novice students may overlook the 
separation/grouping and context-building stages, which involve establishing connections between the 
concepts related to the relevant physics ideas. Moreover, despite the sequential listing of all stages of 
the IMM process on the provided worksheet, a flexible transition occurred between them, as affirmed 
by previous studies (Borromeo-Ferri, 2018; Doerr, 1997; Gurbuz et al., 2018). 

The primary issue in the internal model stage concerned the limitations of the PSTs in developing 
assumptions. One of the main causes of these shortcomings was the students' misconceptions based 
on their daily life experiences. According to Aydin-Guc (2015), the students were only able to develop 
a limited number of new assumptions about the actual state of affairs through the mathematical 
modeling process. This lack of competence in assumption-making was linked to the students' 
insufficient knowledge and experience regarding the context of the activity. Similarly, when 
information about real-life cases was not explicitly provided in the problem context, individuals 
encountered difficulties in generating assumptions for mathematical modeling practices (Blum, 2011). 
Other studies have yielded similar findings regarding the development of this competency based on 
experience (Blum & Borromeo-Ferri, 2009; Bukova-Guzel, 2011). As the students regarded the input 
provided as assumptions, they experienced challenges in developing new ones. Consequently, one 
could argue that the perceived shortcomings were mainly due to the students' inability to comprehend 
the input as part of the problem. For instance, the students read and discussed the problem statement 
multiple times but still faced difficulties in developing a model. According to Maaß (2006), students 
often encounter difficulties in developing a model when they fail to comprehend the presented case 
through written statements. 

Another issue observed in this stage was the students' inability to provide a scientific 
description of the motion of the vehicle that hit the other vehicle from behind. Consequently, they 
attempted to calculate the distance covered by the decelerating vehicle through the equation 
expressing the connection between velocity and time. This finding was consistent with Marshall and 
Carrejo's (2008) observations, as the students predominantly overlooked the change in the speed of 
the moving vehicle during the specified time frame, opting instead to solve the problem by applying 
the instantaneous velocity formula. At this stage, two groups failed to recall the linear motion formulas 
they had learned in class and were unable to apply them to the problem. Tuminaro and Redish (2004) 
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assert that students' inability to apply their mathematical knowledge and skills in physics classes is a 
significant challenge in understanding physics. From this perspective, it is plausible to claim that the 
participants' mathematics performance levels were correlated with their physics performance levels in 
this study. 

In the fifth stage of the study, it was observed that all participating groups chose applicable 
models, namely the velocity-time graph and the distance formula. However, it was found that simply 
drawing the velocity-time graph based on provided values did not necessarily lead the students to use 
the linear motion formula, rather than the instantaneous velocity formula. This finding is consistent 
with previous studies (McDermott et al., 1987; Nemirovsky & Rubin, 1992; Phage et al., 2017), which 
also reported difficulties in interpreting velocity-time graphs and building mathematical models based 
on them. Intra-group conversations suggested that students' limited mathematical skills contributed 
to their inability to interpret the graphics, as noted by Potgieter et al. (2008) and Scott (2012). 

Although the students struggled with interpreting the graph on an individual basis, they were 
able to reach the correct conclusion that the area below the velocity-time graph represents 
displacement through group discussions and shared knowledge. However, the use of km/h instead of 
m/s as the unit of data during graph drawing led to an incorrect calculation of displacement and an 
inaccurate interpretation of the solution. Aydin-Guc (2015) observed that heuristic strategies, such as 
applying unit conversions, were used by students only in response to the researcher's suggestions. 
Moreover, the study found that guiding students to use a graph to represent one-dimensional motion 
through the stages of IMM led to a clearer understanding of the problem and facilitated problem-
solving, as noted by Phage et al. (2017). 

During the model-solving stage, it was observed that the students avoided using the formula 
to compute the trapezoid's area, as expected, instead dividing the area into smaller triangle and 
rectangle-shaped regions, which they were more comfortable with. Ozer-Keskin (2008) attributed this 
to students' inclination to utilize formulae they were familiar with. However, the utilization of incorrect 
units in the velocity-time graph, as highlighted in the model-building phase, resulted in incorrect 
outcomes at the end of the process. In the transformation stage, it was evident that students 
interpreted the models they utilized rather than the mathematical solution they derived. Group 1, for 
instance, connected their solution to a real-life context despite their incorrect assumptions. No group 
was observed to be successful in this stage. Other studies in literature have found that this stage is 
frequently disregarded or involves a superficial and inadequate consideration of the real-world 
implications of the solution (Hidiroglu et al., 2014). 

During the evaluation stage, only one group (Group 1) engaged in a process to test the real-
life applicability and accuracy of the solution. The literature is replete with studies indicating that 
students, confident in the accuracy of their solutions, do not feel the need to verify them, leading them 
to skip checking for the correctness of their solutions and calculation errors (Blum & Borromeo-Ferri, 
2009; Maaß, 2006; Sen-Zeytun, 2013). Blum and Borromeo-Ferri (2009) and Sen-Zeytun (2013) note 
that this is due to students' conviction that the instructor's role is to verify the solutions. In conclusion, 
the utilization of the IMM stages to solve real-life physics problems proved to be an effective approach 
to engaging pre-service teachers' problem-solving skills. Although pre-service teachers typically find 
physics classes dull, they expressed enjoyment in applying their skills to tackle the problem at hand. 
Although the groups followed the recommended stages of IMM diligently, certain tasks such as 
parsing/grouping and generating context posed challenges. Nevertheless, the outcomes of this study 
present a promising avenue to stimulate and uphold pre-service teachers' interest in physics classes 
and their comprehension of the mathematical models used in physics. 
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Limitations of the Study and Recommendations for Researchers and Instructors 
 

Despite the overall positive effects of IMM activities on all groups, individual student 
performance plays a significant role in determining group performance levels. In this study, groups 
were intentionally formed to include high-, medium-, and low-performing students, but groups 
consisting of PSTs with higher levels of personal interest and motivation demonstrated greater 
diversity of ideas and more extensive discussions. A member of Group 1, who displayed a more active 
stance and higher level of performance, was particularly effective in leading group discussions and 
implementing IMM stages as required. Consequently, group composition is essential for group 
dynamics and the success of IMM activities. Familiarity with IMM and internalizing the meaning and 
requirements of each stage also contributes to more effective implementation of these activities. PSTs' 
negative preconceptions about physics, resulting from prior experiences in physics courses, challenged 
them to complete all stages of IMM as required. Participants reported that they had never before 
experienced such a direct relation between physics and mathematics with real life. They appreciated 
working on a problem in a sequence that helped them to think, discuss, and revise their models. 
Additionally, they were more engaged in the activities and voiced their opinions more actively than in 
other sections of the same course. Instructors who intend to apply IMM activities in their classes could 
expect to demonstrate applied execution of each stage of this model and reinforce the insights gained 
through debates involving the entire class. Teaching physics content to science PSTs via modeling 
activities such as IMM, where students actively work on a real-life problem and apply their knowledge 
to more tangible models, can motivate and alleviate PSTs' prejudices against learning physics concepts. 
Our recommendations for future research are presented below: 

 
• We strongly advise instructors who plan to use IMM activities to practice implementing such 

activities a few times before achieving satisfactory results. Novice students may need time to 
become familiar with some stages of IMM. 

• Researchers should create an environment that allows for the implementation of multiple IMM 
activities to ensure that study groups are familiar with one another and the stages of IMM. 
This should focus on developing mental model-building competencies that will help students 
understand and solve the problem. 

• The parsing/grouping stage requires students to associate the concepts of mathematics and 
physics involved in the problem with the relevant discipline. However, the groups in our study 
had difficulty making discipline-related separations or groupings. Therefore, we recommend 
that future researchers exercise this stage in different interdisciplinary contexts. 

• Context building was another challenging stage because students did not complete the 
separating/grouping stage. Therefore, we recommend that each group establish a control 
mechanism before proceeding to the next stage of future research. Asking the right questions 
or establishing checkpoints may help these groups successfully complete each stage. 

• PSTs in our study failed to test the real-world applicability and accuracy of their solutions. 
They were generally self-assured in their solutions. For future studies, another similar real-life 
problem may be provided to help students test their solutions. This way, they can confront 
their errors or incorrect approaches. 
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