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Abstract 
 

Current science education reform efforts emphasize teaching K-12 science 
using hands-on, inquiry activities. For maximum learning and probability of 
implementation among inservice teachers, these strategies must be modeled in 
college science courses for preservice teachers. About a decade ago, Morehead State 
University revised their science content courses to follow an inquiry approach. As 
part of the courses’ assessment, a locally-made, diagnostic pre- and post-test was 
prepared. The main purpose of this “ex post facto” study was to demonstrate how 
concepts from Item Response Theory can be used to detect and remove 
psychometrically faulty items, and how the remaining items can be used by teachers 
to determine science learning gains in an inquiry-based physical science course that 
implemented two different curricula, “Physics and Everyday Thinking” and 
“Interactions in Physical Science”.  
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Introduction 
 
Inquiry physical science curricula 

Recently, results from the Program for International Student Assessment 
(PISA) suggested that, in the United States, school student performance in science 
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and mathematics has moved from world-class to middle-of-the-pack (Snyder & 
Dillow, 2013). Teacher academic preparation and quality has been pointed out as 
one factor that must be improved for PISA scores to recover.  In the last decades, 
science education researchers have reported that students tend to learn better 
when science courses are interactive, collaborative, and inquiry-based. As a 
consequence, educators, particularly those who train preservice school teachers, 
should move away from more traditional, passive, memorization-oriented courses 
(Beiswenger, Stepans, & McClurg, 1998; Briscoe & Prayaga, 2004; Krockover, 
Shepardson, Eichinger, Nakhleh, & Adams, 2002; Luera & Otto, 2005; National 
Research Council, 2000, 2001). 

 
At Morehead State University, a regional public university located in Eastern 

Kentucky, the transition to inquiry-based courses occurred around the year 2007. 
Before then, preservice elementary students were required to complete two lecture-
based courses, Introduction to Physical Science and Introduction to Life Sciences.   

 
The revised course sequence, informed originally by the National Science 

Education Standards (National Research Council, 1996) and currently by the Next 
Generation Science Standards (NGSS Lead States, 2013), resulted in three activity-
based courses: Inquiry Physical Science (covering properties of matter, force and 
motion, heat, light and optics, electricity and magnetism, engineering and sound), 
Inquiry Earth and Space Science (covering astronomy, geology and meteorology), 
and Inquiry Life Sciences (covering cell structure and function, photosynthesis, 
respiration, reproduction, growth, heredity, evolution and ecology). This article 
reported data from one of these revised courses, Inquiry Physical Science (SCI 111). 

 
Between 2008 and the present, SCI 111 has been taught by the same 

instructor, usually one or two sessions per semester. In addition to using several 
formative and summative assessments through the semester (including daily 
quizzes, unit tests, video reports, written projects, and homework), the course was 
evaluated using a locally-made, diagnostic assessment. This test consisted of 40 
questions directly correlated with the content of the course. Although many test 
questions were inspired by other validated assessments, the final diagnostic test 
only went through face validity by a panel of experts. This is true for many locally-
made, classroom tests used in schools and postsecondary education institutions. 

 
Between 2008 and 2010, SCI 111 used a research-based curriculum called 

“Physics for Everyday Thinking” (PET), created by Its About Time, Inc. (Goldberg, 
Robinson, & Otero, 2008). They described PET as follows (It’s About Time Inc., 
2015a): 

 
PET is a one-semester curriculum designed in part for prospective or practicing 
elementary teachers. The course uses a student-oriented pedagogy with a 
physics content focus as well as a unique Learning about Learning component. 
It has been taught at two-year and four-year institutions; has been adapted for 
a science methods course in schools of education; and can be offered as a 
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workshop for practicing elementary teachers. PET elicits student initial ideas 
and then provides students with opportunities to acquire evidentiary support, 
through hands-on activities or computer simulations, which helps them to 
decide, if appropriate, to develop new or modified ideas. This component is 
designed to help students develop an understanding of how scientists develop 
knowledge, how they learn science themselves, and how others (for example, 
either elementary school students or other college students) learn science. 

 
Between 2010 and the present, a new research-based curriculum called 

“Interactions in Physical Science” (IPS) was implemented to cover additional 
properties of matter and modern physics topics (Goldberg, 2009). IPS was created 
by the same company, and described this course as follows (It’s About Time Inc., 
2015b): 
 

The content in IPS is broken down into carefully crafted chapters of learning. 
Each chapter begins with a purpose followed by a Key Question. Students 
generate ideas and questions, then explore using the science practices. They 
record their results and, like scientists, they discuss their results with each other 
and as a class. Students also compare their ideas with real scientists. The role of 
eliciting students’ prior knowledge is an important aspect of the pedagogy 
of IPS. The appreciation of the importance of students’ initial ideas, as well as 
the need to reconcile those ideas with formal learning, guided the development 
of the curriculum. IPS is hierarchical, in that chapters and units build on one 
another, and social, because real scientific knowledge develops through 
collaboration as communities of scientists work together. In IPS, students, like 
scientists, interact with their peers as they work in teams to do experiments 
and gather evidence, share ideas with their group, and participate in class 
discussions to build consensus ideas. 

 
Table 1 summarizes the main content included in each of these curricula. 
 

Physics and  
Everyday Thinking 

Interactions in  
Physical Science 

* Interactions and energy - speed; 
motion and energy; contact 
interactions; slowing and stopping; 
warming and cooling; conservation 
of energy. 
* Interactions and forces - motion 
with a continuous force; pushes 
and slowing down; net force; 
friction; Newton’s laws; motion 
with balanced forces. 
* Interactions and systems - 
magnetic interactions; electric 
charge interactions; gravitational 
interactions. 
* Model of magnetism - 

* Science experiments – measurements; experimental 
design. 
* Introducing interactions – magnetism; electric charge; 
electric circuits; electro-magnetism. 
* Interactions and properties – measuring length volume 
and density; characteristic properties. 
* Energy descriptions of interactions – energy; mechanical 
waves; energy transfer; speed of objects and waves; 
changing speed. 
* Mechanical interactions – motion energy; applied, friction, 
drag and elastic interactions. 
* Mechanical interactions and forces – forces; frictionless 
motion; net force; Newton’s laws; simple machines. 
* Gravitational interactions – Law of gravitation; mass and 
weight; orbital motion; terminal speed; buoyancy; potential 



                                        Knell, Willhoite, Fugate and González-Espada                          4 

 

Electronic Journal of Science Education                                      ejse.southwestern.edu 

 

experiments with magnets; initial 
and improved experimental 
models. 
* Electric circuit interactions - 
circuits and energy; multi-bulb 
circuits and energy; multi-bulb 
circuits and current; electrical 
efficiency. 
* Light interactions – shiny 
surfaces, light and vision; non-
shiny and black surfaces; 
refraction; light and color. 

energy. 
* Mass conservation in open and closed systems. 
* Energy conservation – Heat conduction and infrared 
interactions; thermal energy and phase change; efficiency; 
reflection and refraction; color. 
* Chemical interactions – Acids and bases; burning 
reactions; exothermic and endothermic reactions. 
* Interactions and classifying materials – physical 
interactions; mixture and single substance; elements and 
compounds; the Periodic Table. 
* Physical interaction and the structure of materials – 
properties of solids, liquids and gases; atomic structure; 
isotopes and radioactivity. 
* Chemical reactions – Chemical bonds, balancing reactions. 

 
Since the same locally-made diagnostic assessment was offered since 2008, 

enough students have completed it, making it possible to measure with a high 
degree of confidence both the students’ science knowledge gains and to compare 
what curricula, PET or IPS, better contributed to these gains.  

 
In this case, the sample size was particularly important because it allowed 

the use of psychometric techniques to evaluate the quality of individual test items, 
to identify those items that have questionable psychometric parameters, and to 
remove such items prior to any knowledge gains analysis. This process 
strengthened the confidence in the study’s findings.  
 
Item Response Theory and Locally-Made Assessments 

Assessments are commonly used in the fields of education and psychology 
(Alkharusi, Aldhafri, & Alnabhani, 2014; Jones, 2013; Moss, Girard, & Haniford, 
2006). One of the greatest issues in education has been to determine how to 
measure learning and other instructional constructs that cannot be physically 
measured (Ardovino, 2000; Sternberg, 2003). Despite this problem, educators 
measure their students' aptitude and learning through various forms of 
assessments, especially written tests (Chatterji, 2003). 

 
What many teachers have failed to recognize is that, just because students 

missed a test question, it might not necessarily mean that the students failed to 
learn the material. Sometimes the test itself was not rigorously constructed or might 
have validity and reliability problems (Brown, 2000; Koretz, 2008; Lemann, 1999; 
Weller, 2001).  

 
Fortunately, a number of psychometric approaches have been developed to 

enhance the reliability and validity of measures, under the theoretical framework of 
Classical Test Theory (de Klerk, 2014; DeVellis, 2006; Mislevy, 1996). These types of 
analyses focus on a whole test rather than specific items on a test (Hambleton & 
Jones, 1993; Lord, 1959; Zimmerman, 1998). 
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A more recent approach to enhance the validity and reliability of tests is Item 
Response Theory or IRT (Morris et al, 2006). Where classical test theory measured 
results of a test as a whole, IRT can analyze responses to individual items on a test 
(Erdodi, 2012; Fan, 1998; Gonzalez-Espada, 2008, 2009; Hill & Lewicky, 2007; 
Pellegrino, 2001; Yang, 2014). IRT experts have suggested that test items that are 
answered correctly by almost everybody, items that almost no one answered 
correctly, and items where below-average scorers performed better than above-
average scorers should not be part of many assessments (Crocker & Algina, 1986). 

 
Despite all the available information on IRT, this topic is seldom covered in 

many pre-service education measurement courses and, as a consequence, it is rarely 
used in the classroom on teacher-made tests (Morris et al, 2006). Only large-scale 
standardized tests, such as the ACT and GRE tests, have faced the scrutiny of item 
analysis (Pellegrino, 2001; Wagner, 2008). Fortunately, computer technology and 
spreadsheets are ubiquitous now, allowing teachers to start computing data-rich 
IRT parameters for locally-made tests, especially diagnostic tests, end-of-course 
tests, or unit tests that are used over subsequent semesters, where appropriate 
sample sizes can be obtained.  

 
Although many standardized assessments have been through IRT validation 

prior to being implemented, this has not always been possible for locally-made tests. 
As a consequence, an ex post facto IRT validation approach can be an option. In this 
case, students’ responses are used to flag problematic items and to remove them 
from score calculations; the remaining items can then provide a more robust dataset 
for instructional and evaluation purposes. 
 
Purpose 

This study had two main goals: (1) to use IRT concepts to demonstrate how a 
locally-made diagnostic test can be evaluated “ex post facto” to identify questions 
that do not meet psychometric parameters and remove them prior to an analysis of 
knowledge gains, and (2) to use diagnostic test data to determine what inquiry-
based physical science curricula, PET or IPS, resulted in the largest science 
knowledge gain among pre-service students enrolled in SCI 111 at Morehead State 
University. 
 

Methods 
 
Sample  

The population of interest was made of college students majoring in 
elementary education (P-5) at Morehead State University. The sample size was 456 
students (86% female; 12% male) who enrolled in SCI 111, including 35% 
freshmen, 33% sophomores, 24% juniors, and 7% seniors. Of these students, 278 
used the PET curriculum between 2008-2010 and 175 used the IPS curriculum 
between 2010-2013. A total of 192 students took both the pre- and the post-test. 

 
Diagnostic Test 
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The diagnostic test for SCI 111 consisted of 40 multiple-choice items with 
five alternatives. The content emphasis of this assessment was physical science, 
including topics such as properties of matter, linear and circular motion, forces, light 
and sound waves, heat and temperature, magnetism, and electricity and circuits. 
This test was prepared by combining items from different sources, including 
previously validated instruments, such as the Force Concept Inventory (Hestenes, 
Wells, & Swackhamer, 1992; Well, Henstenes, & Swackhamer, 1995). The pre-test 
was completed the first day of class, after going over the class syllabus. The post-test 
was completed the last week of the semester, before the end-of-course examination. 
The semester was 15 weeks long. 
 
Statistical Analysis for IRT Parameter Calculation 
 Before any science content gains can be calculated, two important IRT 
parameters were calculated, item difficulty and item discrimination. These were 
compared with the suggested values psychometricians consider appropriate. Those 
items that do not meet IRT guidelines were discarded from the dataset. 
 

For each item, the ratio of correct scores and the sample size for a given item was 

computed. This is known as the item difficulty: 

 

Difficulty = correct scores 

                                                               sample size for item 

 

The literature suggested that items that are answered incorrectly by most students 

(difficulty < 0.20) or items that are answered correctly by most students (difficulty > 

0.80) diminish the validity and reliability of the test as a whole and should be discarded 

(Crocker & Algina, 1986; Ebel & Frisbie, 1991). 

 

In addition, overall scores were used to classify students into two sub-groups, 

“above average scorers” and “below average scorers”. Then, item difficulty was 

calculated for each item and each subgroup. Finally, the difference between the item 

difficulties of the subgroups, known as the item discrimination, was calculated: 

 

Discrimination = difficulty above average scorers  –  difficulty below average scorers 

 

Basically, item discrimination measured the degree to which students with high overall 

exam scores also answered a particular question correctly. A question was considered a 

good discriminator when students who answered the question correctly also did well on 

the test (Slater, Beal-Hodges, & Reed, 2014). The literature suggested that the 

discrimination of an item should be positive, that is, above average scorers should do 

better on an item compared with below average scorers. In general, item discrimination 

values between 0.4 and 1.00 are considered best, and values between 0.20 and 0.40 are 

satisfactory. When an item discrimination value is below 0.20, it is not differentiating 

well between low and high scorers. An item with discrimination values close to zero or 

negative must be discarded (Crocker & Algina, 1986; Ebel & Frisbie, 1991). 
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Statistical Analysis for Knowledge Gains Calculations 

After removing psychometrically problematic items from the dataset, the rest of 

the items, and the overall scores, were analyzed using standard descriptive and inferential 

statistics (Weinberg & Goldberg, 1990). The average pre-test scores for both PET and 

IPS, the average post-test scores for both PET and IPS, the average pre- and post-test 

scores for PET, and the average pre- and post-test scores for IPS were compared using t-

tests to identify significant differences. A p-value of 0.05 was selected as a cutoff value 

to balance the possibility of both Type I and II errors. 

 

In addition, normalized gains, also known as Hake gains (Hake, 1998), were 

calculated for each test item. This formula established a ratio between the number of 

correct answers in the pre- and post- surveys for any given item and the difference 

between the maximum possible score and the pre-survey score for that item. Since 192 

students completed both the pre- and the post-test, the formula becomes: 

 

Normalized gain =   [post-survey item score] – [pre-survey item score] 

                          192 – [pre-survey item score] 

 

A normalized gain factor indicated growth in the construct of interest with respect to the 

participants’ starting position, mathematically reducing potential ceiling effects if the 

scores are close to 100%. The literature (Hake, 1998) established standard cutoff points 

as follows: A normalized gain of less than 30% was considered “low”, one between 30% 

and 70% was considered “moderate”, and one above 70% was considered as “high gain”. 

 

Findings and Discussion 
 
IRT Post-validation Analysis 

After removing from the dataset students who completed the pretest but not 
the posttest (n = 63, 13.8% of the total number of participants) and students who 
completed the posttest but not the pretest (n = 6, 1.3% of the total number of 
participants), the dataset was reduced to 192 students who completed both tests. 
The revised dataset was composed of 46 male students (12%) and 332 female 
students (88%) distributed by class rank as 126 freshmen (34%), 128 sophomores 
(34%), 89 juniors (24%) and 29 seniors (8%). Six students did not identify their 
gender and 12 students did not identify their class rank. A total of 252 students 
(66%) completed SCI 111 using the PET curriculum and the remaining 132 students 
(34%) completed SCI 111 using the IPS curriculum. 

 
The revised dataset was used to calculate item difficulty and item 

discrimination parameters. The results are shown in Table 2. 
 

Question Difficulty 
Pretest 

Difficulty 
Posttest 

Discrimination 
Pretest 

Discrimination 
Posttest 

Flagged 

1 0.4219 0.5365 0.1114 0.0949  
2 0.8229 0.8333 0.0968 0.1230 x 
3 0.8333 0.8906 0.0764 0.0229 x 
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4 0.3698 0.5938 0.2551 0.2028  
5 0.4896 0.5340 0.1871 0.2778  
6 0.7969 0.9010 0.0645 0.0840 x 
7 0.2461 0.2604 0.1858 0.1991  
8 0.5260 0.8750 0.1157 0.0044  
9 0.1667 0.4844 0.0486 0.2562  
10 0.3646 0.7604 0.1819 0.0798  
11 0.6979 0.7552 0.2167 0.1324  
12 0.8958 0.9119 -0.0461 0.0205 x 
13 0.1771 0.4583 0.1116 0.3846  
14 0.4948 0.6667 0.3646 0.4231  
15 0.6302 0.7292 0.1826 0.1665  
16 0.0628 0.0781 0.0858 0.0223 x 
17 0.4688 0.6042 0.0195 0.0242 x 
18 0.4031 0.7917 0.1907 0.2144  
19 0.7083 0.8438 0.1545 0.1634  
20 0.224 0.5104 0.1448 0.1083  
21 0.5885 0.7053 0.1809 0.2131  
22 0.4271 0.5469 0.2263 0.1561  
23 0.7906 0.8125 0.1401 0.1779  
24 0.1042 0.4427 -0.0165 0.2719  
25 0.1146 0.3802 0.1090 0.3206  
26 0.2917 0.3698 0.2831 0.2802  
27 0.1979 0.2448 0.0499 0.2320  
28 0.2135 0.4115 0.2486 0.4002  
29 0.1152 0.0573 0.1294 -0.0169 x 
30 0.3298 0.5288 0.2512 0.1745  
31 0.7958 0.9271 0.2554 0.1233  
32 0.2513 0.3906 0.1965 0.2363  
33 0.5079 0.7083 0.1102 0.1579  
34 0.4263 0.5469 0.3353 0.3641  
35 0.4869 0.8639 0.3400 0.1118  
36 0.1937 0.5104 0.0375 0.1290  
37 0.5812 0.7813 0.2382 0.0359  
38 0.3968 0.7760 0.2687 0.0385  
39 0.3979 0.7016 0.0544 0.2568  
40 0.3158 0.1390 -0.0776 0.0279 x 

 
Table 2. Item difficulty and discrimination parameters for a locally-made, diagnostic 
assessment. Items that did not meet IRT guidelines were “flagged”. 
 

IRT data for both test administrations uncovered that questions 2, 3, 6, and 
12 had item difficulty values higher than about 0.80, suggesting that most students 
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answered correctly, and item discrimination values lower than about 0.10, 
suggesting that low and high scorers were answering in similar ways. These 
questions were discarded from the dataset. 

 
Also, for both test administrations, questions 16 and 29 had item difficulty 

values lower than about 0.20, suggesting that most students did not answer 
correctly, and item discrimination values are less than about 0.10, suggesting that 
low and high scorers were answering in similar ways. These questions were 
discarded from the dataset as well. 

 
Question 40 was discarded because students found it more difficult in the 

posttest, the first discrimination value was negative, and the second one was very 
close to zero. 

Question 17 was discarded upon further inspection of the students' 
responses. Although the discrimination values are very close to zero, the difficulty 
values were located between 0.50 and 0.60, which is normally considered 
appropriate. After a detailed examination of how students selected each alternative, 
it was noted that three of the options were basically ignored, converting this item 
into a 2-option question. The proportion of correct answers was close enough to 50-
50 to have a strong guessing effect. Many of the remaining items had either good to 
marginal difficulty values or good to marginal discrimination values, but not both, 
and were preserved for the subsequent knowledge gains analysis. 

 
Note that items were discarded without trying to determine why item 

difficulties and discrimination values were below recommended guidelines. When 
assessments are pre-validated, flagged items can be examined and revised as 
needed. Post-validated assessments, like the one used in this study, do not have that 
advantage. At this point, it is simply impossible to guess how and why students 
responded to a flagged item, although incorrectly keyed answers, confusing text, 
confusing illustrations, content that was not thoroughly covered during class, or 
higher level questions might be partly responsible (Slater, Beal-Hodges, & Reed, 
2014). 
 
Science Knowledge Gains Analysis 
 Descriptive and inferential statistics were calculated with the remaining 32 
diagnostic test items. Comparing the results of the pre- and post-test for the PET 
curricula, it was found that the average pre-score and standard deviation were 
12.44 + 3.51 and the average post-score and standard deviation were 19.86 + 4.08. 
This difference was statistically significant (t = 15.46, df = 250, p < 0.000, effect size 
= 0.70). The results of the pre- and post-test for the IPS curricula were similarly 
compared, and it was found that the average pre-score and standard deviation were 
14.00 + 3.70 and the average post-score and standard deviation were 18.61 + 4.03. 
This difference was also statistically significant (t = 6.92, df =132, p < 0.000, effect 
size = 0.52). This means that both curricula performed similarly in producing 
statistically significant knowledge gains as assessed by the IRT-corrected diagnostic 
test.  
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However, it was noted that the actual range of average pre- and post-test 
scores for PET and IPS were 7.42 and 4.61 points respectively, suggesting that PET 
produced the largest increase in actual test points. The IPS curriculum covered more 
content knowledge than PET, especially in topics such as the nature of science, 
properties of matter, and modern physics. This, added to the inclusion of 
engineering topics required by the Next Generation Science Standards, might be 
causing an accelerated pacing that impacted the students’ acquisition of content 
knowledge and resulted in a smaller pre- and post-test point range. 

 
Comparing the results of the pretest for both curricula, it was found that the 

average pre-score and standard deviation for PET and IPS were 12.44 + 3.51 and 
14.00 + 3.70, respectively. This difference was statistically significant (t = 2.863, df = 
190, p = 0.005), suggesting that the 2008-2010 students, as a group, were 
statistically different from the 2010-2013 group of students. This result is intriguing 
because it would be expected that pre-test scores should be similar, regardless of 
when students enrolled in the class. A possible explanation for this result might be 
that, around 2011, the College of Education increased entrance requirements for 
their Teacher Education Programs, so it was possible that more recent students in 
SCI 111 had better grade point averages, which could be reflected in their prior 
science content knowledge. 

 
The results of the posttest for both curricula were similarly compared, and it 

was found that the average post-score and standard deviation for PET and IPS were 
19.86 + 4.08 and 18.61 + 4.03, respectively. An analysis of covariance demonstrated 
that the difference was also statistically significant (F = 13.91, p < 0.000).  

 
For each test item, the normalized gain was calculated (Table 3). The overall 

gain was 0.35. Following Hake (1998), 15 items obtained a normalized gain of less than 

30%, considered “low”, 15 items obtained a normalized gain of between 30% - 70%, 

considered “moderate”, and two items obtained a normalized gain above 70%, considered 

“high gain”. 

 

Question 
Number 

Number 
Correct 
Pretest 

Number 
Correct 
Posttest 

Hake 
Gain 

Question 
Number 

Number 
Correct 
Pretest 

Number 
Correct 
Posttest 

Hake 
Gain 

1 81 103 0.20 23 151 156 0.12 
4 71 114 0.36 24 20 85 0.38 
5 94 102 0.08 25 22 73 0.30 
7 47 50 0.02 26 56 71 0.11 
8 101 168 0.74 27 38 47 0.06 
9 32 93 0.38 28 41 79 0.25 
10 70 146 0.62 30 63 101 0.29 
11 134 145 0.19 31 152 178 0.65 
13 34 88 0.34 32 48 75 0.19 
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14 95 128 0.34 33 97 136 0.41 
15 121 140 0.27 34 81 105 0.22 
18 77 152 0.65 35 93 165 0.73 
19 136 162 0.46 36 37 98 0.39 
20 43 98 0.37 37 111 150 0.48 
21 113 134 0.27 38 75 149 0.63 
22 82 105 0.21 39 76 134 0.50 

 
Table 3. For each question in the revised dataset, the number of students who 
answered correctly the pre- and post-test items is shown, as well as the normalized 
gain.  
 
 

Conclusion and Limitations 
 

One of the research study’s goals was to use IRT concepts to demonstrate 
how a locally-made diagnostic test can be evaluated “ex post facto” to identify 
questions that do not meet psychometric parameters and remove them prior to an 
analysis of knowledge gains. Data analysis from almost 200 students was able to 
pinpoint eight questions that were either answered correctly by almost everybody, 
answered incorrectly by almost everybody, and/or questions where below-average 
scorers performed better than above-average scorers.  

 
This finding was important because it shows that, even after using questions 

from previously validated assessments to create a diagnostic physical science test 
and after a panel of experts revised and approved it, the assessment still had 
questions that were psychometrically problematic upon further analysis using IRT. 
This situation might be similar to what happens in many science classrooms, where 
science teachers, as content experts, prepare tests with questions that look 
satisfactory (that is, the test has face validity), but might include questions that 
could be interpreted by students in different ways. This study demonstrated that, 
given a large enough sample size, science teachers could use IRT concepts to post-
validate and improve their diagnostic, end-of-course, and unit assessments. 

 
The second goal of this study was to use an IRT-improved dataset to compare 

the effectiveness of two physical science curricula, PET and IPS and which 
contributed to the largest science knowledge gain among students who completed 
SCI 111. The data showed that although both curricula resulted in statistically 
significant better scores on the post-test and an average normalized gain of about 
35%, the PET curriculum produces a larger difference between average pre- and 
post-test scores. For teacher educators who are considering whether to implement 
PET or IPS in their inquiry physical science courses for preservice teachers, PET 
seems like a better option. This study also observed significantly higher pre-test 
scores among more recent students, which might be a reflection of increased entry 
requirements into the university’s Teacher Education Program. 
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 One main limitation of the study was sample size. Organizations that engage 
in creating, validating, and administering large-scale standardized tests can obtain 
very robust sample sizes for their IRT analyses, calculate very precise item 
parameters, and make better informed decisions about revising test questions prior 
to full implementation. Schoolteachers and college faculty will very likely not 
achieve large sample sizes, but even a moderate sample can lead to useful post-
administration insights on test questions that might not meet IRT guidelines.  
 

Overall, it was clear that even the most carefully prepared teacher tests need 
to be examined from an IRT perspective, especially unit tests or tests that are used 
in multiple semesters. In an age of increased accountability, teacher can learn from 
the results of this study to improve the validity, reliability, and accuracy of locally-
made science assessments. 
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