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ABSTRACT 
 
Integer arithmetic is difficult for students worldwide. Although students’ integer thinking has frequently been studied, 
little is known about typical instructional practice for this difficult topic. Thus, to investigate what resources teachers 
use, we surveyed U.S. middle-grade teachers who teach negative numbers. About half the teachers said they need more 
integer resources and about two-thirds of the teachers used Teachers Pay Teachers to obtain such resources. During an 
integer unit, each classroom used up to 7 contexts and tools/models. Moreover, we analyzed which features of tools 
teachers reported using. Horizontal number lines were used significantly more often than vertical. The physical tools 
used for chip models reflected commercially-determined valence associations that were inconsistent with real-life 
symbolizations, significantly more than conceptually consistent symbolizations. Therefore, recommendations include 
the following: (a) encourage teachers and researchers to focus on how features of tools (number line directions, chip 
colors and symbols) affect students’ experiences and learning (b) evaluate potentially optimal sequences of models and 
contexts, (c) make quality integer resources freely accessible to U.S. teachers in the spaces they look to reduce for-profit 
influences and (d) provide criteria to support teachers to select resources based on learning affordances irrespective of 
commercial availability. 

 

 
Keywords: Negative numbers, integer arithmetic, manipulatives, chip model, number line model, 
games, mathematics learning, instructional tools, classroom practice. 
 

Introduction 
 

Students must master integer arithmetic in middle school to facilitate their success in advanced 
mathematics. Moreover, high school science courses and all science fields require proficiency with 
negative numbers (e.g., vectors, chemical reactions). Thus, effective middle school integer instruction 
has far-reaching implications. According to standards in the United States, in Grade 6 students learn 
about negative numbers and in Grade 7 students are expected to master all rational number operations 
including integers and negative fractions (National Governors Association Center for Best Practices 
[NGA Center] & Council of Chief State School Officers [CCSSO], 2010). 

Unfortunately, despite the importance of negative numbers, calculations can feel 
counterintuitive (Bishop et al., 2014; Fischbein, 1987; French, 2001). This is especially true for 
multiplying or dividing two negative numbers and subtracting a negative number because it feels 
wrong that the result could be positive (Fischbein, 1987; French, 2001). A Rasch analysis of the Integer 
Test of Primary Operations (ITPO) determined that even after instruction, the most difficult problem 
structures were a) division by -1 and b) subtraction of a positive number (i.e., positive minuend) minus 
a negative (i.e., negative subtrahend) (Nurnberger-Haag et al., 2022). To provide a sense of how 
difficult it is to master integer arithmetic, even after three weeks of Grade 7 instruction with a National 
Science Foundation (NSF)-funded textbook, accuracy on each subtraction item on the ITPO ranged 
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from 37-67% (Nurnberger-Haag et al., 2022, p. 11). Despite division by negative numbers (i.e., 
negative divisor) being crucial for accurate factoring in later mathematics, the highest accuracy rate 
when dividing by a negative number was 75%, with only 71% of students proficient with division by 
-1 (Nurnberger-Haag et al., 2022, p. 13). 

Given these student difficulties, teachers and researchers have developed and continue to seek 
resources intended to facilitate learning. However, what integer instructional resources are being used 
in actual classrooms and where teachers have obtained such resources has not yet been investigated. 
Thus, with this study, we sought to gain insights about a wide range of resource types teachers might 
be using to begin to better understand what and how students might be learning integer arithmetic. 
Broadly, we asked middle grade teachers where they obtained integer instructional resources, what 
resources were posted in their classroom environment, the physical and virtual tools provided, as well 
as the contexts and rules used.  
 

Review of Literature and Theoretical Perspectives 
 

Due to the diverse types of resources teachers use, a single theoretical lens would need to be 
too broad and thus provide insufficient focus. Research in mathematics education, when possible, 
should employ analytic frameworks that are sufficiently narrow to productively interpret particular 
data (Spangler & Williams, 2019). Different theoretical constructs are appropriate for analyzing each 
resource type in this study, so these constructs are addressed within the relevant sections of the 
literature review. 
 
How Teachers Obtain Negative Number Resources 
 

Teachers seek advice and resources about effective math teaching in various ways from people 
they know within their school system, as well as formal organizations such as councils of mathematics 
and social media networks (Shapiro et al., 2019; Wilhelm et al., 2016). The impact of social media on 
teachers’ practices has increased significantly over the past decade. Teachers use tools such as blogs, 
YouTube, social network sites (e.g., Facebook, Twitter), and for-profit teacher-sharing sites such as 
Teachers Pay Teachers to locate resources and connect with colleagues. In a survey of elementary 
teachers across the United States about where they obtain math resources, 89% used Teachers Pay 
Teachers, 74% used Pinterest, 68% used a Google search (without identifying a particular site found 
through that search), and 34% reported the National Council of Teachers of Mathematics (NCTM) 
or state affiliate websites (Shapiro et al., 2019). A strength of these prior studies is that rather than 
reporting where teachers find resources generally, these studies provided insights about resources for 
mathematics. 

Insights specific to a topic would be important to inform the field’s understanding of learning 
and instruction of that topic. Yet, a single study was found that analyzed social media resources specific 
to the topic of negative numbers. This study focused on Pinterest and revealed that one-third of 
frequently pinned negative integer teaching resources were inaccurate (Hertel & Wessman-Enzinger, 
2017). The most common inaccuracy (with thousands of re-pins) was ambiguity about order and 
magnitude, meaning the resources referenced “higher” or some synonymous term for order instead 
of absolute value or magnitude. Perhaps most disconcerting was 22% of these “free” pins linked to 
for-profit sites—and companies can pay to promote pins, which leads to increased popularity and re-
pins (Hertel & Wessman-Enzinger, 2017). Thus, this accelerates the visibility of commercialized 
resources. 
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Games 
 

As part of the investigations on resources, we intended to gain more insights about where 
teachers obtain the games they offer their students related to the source category (i.e., commercial, 
textbook, teacher-created) as in Nurnberger-Haag and colleagues (2023). Teachers often use games to 
increase motivation and enjoyment for learning mathematics (Ernest, 1986; White & McCoy, 2019). 
Middle school is a time when students are especially attentive to peer comparisons and feel more 
anxiety (Scarpello, 2007). Games can potentially disrupt math anxiety that is so ubiquitous, especially 
in the United States (Ersozlu & Karakus, 2019; Luttenberger et al., 2018). However, games are a 
complex construct with ideal games balancing how a person experiences tension and relaxation due 
to game features (Schell, 2008). Student experiences with games designed for learning negative number 
operations that are also widely available were recently investigated. All students in two sections of 
mathematics with the same teacher played three integer games: a commercially produced game, a 
textbook game, and a teacher-designed game (Nurnberger-Haag et al., 2023). The teacher-designed 
game available for free in a peer-reviewed, open-source journal was favored by students for its learning 
affordances and enjoyment, whereas the commercially produced game caused anxiety for many 
students. Thus, to avoid marginalizing any students, a key finding—using the Mathematics Classroom 
Games Features Framework—was that math games should balance skill with chance and provide 
students time to think by having them take turns (Nurnberger-Haag et al., 2023). This study of a single 
teacher’s students provided important insights specific to three integer game options and contributed 
a theoretical framework for thinking about math games broadly. Yet, to understand students’ 
experiences with integer games across many classrooms more research is needed. 
 
Environmental Math Theoretical Construct 
 

Some resources teachers typically post in their classroom environments could be categorized 
with the construct of environmental math (Nurnberger-Haag et al., 2019). The term environmental math 
likely evokes ideas of applying mathematics to solve environmental problems; however, this was not 
the meaning of the term used here. The term has its roots in early childhood literacy, where the 
construct of environmental print refers to the print children encounter in their lived experiences outside 
of classrooms (e.g., company logos, street signs) or inside classrooms (e.g., words like “door” or sink” 
posted to increase vocabulary (Kirkland et al., 1991). Environmental math refers to the math-related 
subset of environmental print, such as math posters, number lines, maps of the school, thermometers, 
math word walls, clocks, calendars, mathematical practices, and so forth (Nurnberger-Haag et al., 
2019). Math classrooms often have motivational posters, class rules, or other print. These motivational 
postings are environmental print. According to Nurnberger-Haag and colleagues (2019), non-math 
specific motivational signage in a math class, such as Christopher Robin’s statement to Winnie-the-
Pooh, “You are braver than you believe…and smarter than you think” (Geurs, 1997) are not 
environmental math; whereas, motivational posters related to mathematical practices and mindsets 
would be considered environmental math. Nurnberger-Haag et al. (2019) formed this theoretical 
construct of environmental math and created a teacher-friendly framework to assess the potential 
learning impacts of features of classroom postings. The environmental math of shapes, for example, 
has been implicated in the pervasive misconceptions of children as well as adults (Nurnberger-Haag 
& Thompson, 2023; Nurnberger-Haag et al., 2020). The environmental math of integers, however, 
has not yet been investigated. 
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Rules That May or May Not Expire 
 

Rules might be valued in mathematics due to their decontextualized and abstract affordances. 
Yet, providing rules as an instructional approach may also pose challenges. The theoretical construct 
of rules that expire (Karp et al., 2014, 2015) provides a useful lens for research and practice to recognize 
when a rule has limited value for a given topic and can be counter-productive for understanding 
mathematics as a whole. We interpreted Karp and colleague’s (2014, 2015) explanations of this 
construct as satisfying one of two categories: (a) statements that are mathematically valid only under 
certain constraints so instruction of these leads to student misconceptions or (b) procedural dictates 
that may not always be necessary. Karp et al. (2014, 2015) identified 37 such phrasings, notations, or 
rules that have or will expire in Kindergarten through Grade 8. One such rule that impacts integer 
concepts is “Two negatives make a positive” (Karp et al., 2015, p. 212), because this is only always 
true for the operations of multiplication and division, whereas it is always false for addition. An 
example of a procedural dictate that expires is “KFC: Keep-Flip-Change” (Karp et al., 2015, pp. 210-
211) in which students are taught to divide fractions by inverting and multiplying, however, this 
procedure is not always necessary and fails to support conceptual understanding. Karp and colleagues 
(2014, 2015) also encouraged teachers to find and eliminate other rules that expire to improve 
instruction. Whereas these publications provided important introductions to the construct and offered 
some specific examples, to improve instruction of any topic, it would be helpful to curate rules specific 
to a topic, such as integer arithmetic. 

Even if rules are accurate (i.e., do not expire), to explicitly teach students any rule may not 
support conceptual understanding (NCTM, 2014; Robinson & Dubé, 2009). Explicit rule instruction, 
according to the cognitive demand framework of mathematical tasks, would be low cognitive demand 
(Stein et al., 2009). Whereas if students generalize rules by noticing patterns and structures to generate 
their own rules, such approaches are consistent with high cognitive demand tasks (Stein et al., 2009). 
These approaches are also consistent with the Mathematical Practice Standards of Look for and Make 
Use of Structure (MP7) and Look for and Express Regularity in Repeated Reasoning (MP8) (NGA Center & 
CCSSO, 2010). Thus, our study sought data to understand how prevalent rule-focused instruction 
might be for integer learning as well as the specific rules teachers use in relation to the rules that expire 
construct. 
 
Tools 
 

To externalize mathematical thought for oneself and communicate with others, words, 
diagrams, pictures, manipulatives, expressions, and symbols are used to represent ideas (Lesh et al., 
1987; Goldin, 2003; Kamii et al., 2001). Thus, the use of mathematical representations is essential to 
successful mathematics learning (Huinker, 2015; Pape & Tchoshanov, 2001). The construct of a 
representational tool (artifact) need not be limited to a material object (Rabardel, 1995). Tools can be 
written symbols, physical objects, cognitive objects, or processes such as algorithms (Kuzniak et al., 
2016; Rabardel, 1995). 

Tools typically used for integer instruction include physical manipulatives of square tiles or 
round chips, drawings or virtual versions of the same, number lines, and drawings/animations of 
balloons and weights (e.g., Pettis & Glancy, 2015; Van de Walle et al., 2019). These tools have been 
typically viewed as isomorphic with a model (e.g., chip model, number line model). Yet, teachers can 
select tools to enact integer models that differ by specific features, which further increases the 
variability of the models students experience. 

For instance, number line models can be enacted with horizontal or vertical number lines. Of 
course, students need to become proficient with both horizontal and vertically oriented number lines. 
Vertical number lines are commonly used to represent temperature and elevation, whereas if a number 
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line is used to represent the abstract construct of time, horizontal number lines are typically used for 
timelines. Moreover, Cartesian coordinate graphing and the geographic coordinate system (i.e., 
longitude and latitude) require proficient simultaneous coordination of vertical and horizontal number 
lines. Furthermore, applications of vectors in physics require students to calculate flexibly in all 360 
degrees. Thus, it would be important to investigate how common it is that middle grade students have 
the opportunity to build their concepts of number and proficiency with number lines at least in each 
of the vertical and horizontal directions. 

Neither the desired end state for knowledge, nor convenience, should completely determine 
the tools or order of instruction. The learner must be considered. In light of theories of embodied 
cognition (Glenberg, 2010; Lakoff & Nunez, 2000), we should recognize that vertical and horizontal 
number line representations are based on differing embodied experiences of up/down and left/right 
motions. As a way to consider potential implications for others’ learning (and especially young 
learners), we have found it useful in practice to ask mathematically proficient adults to recognize the 
potential influences on their own personal directional conceptions of number and when these might 
have occurred, even if this differs from one’s current individual conceptions. We find this crucial for 
any adult, but especially for English-speakers who are experts in mathematics and so have experienced 
decades of exposures to traditional textbook-based number lines in which more is to the right—
because in English we read left to right. Yet, this left/right conception of quantity is not a human’s 
first experience with less and more. Up and down are embodied experiences from birth as a shared 
human experience that more is a building up (e.g., stacking more blocks makes a tower taller) or 
growing (we grow taller as we grow older and taller people are believed by children to be older or have 
more years) and less is down (Lakoff & Johnson, 1980). Of course there are other real-life instances 
in which down is thought of as more, such as when writing a list and the list grows down, however, 
this is another text-based conception of quantity, rather than embodied experiences prior to 
reading/writing. Consistent with our first embodied experiences, in most of the world humans use a 
vertical number line to represent quantities, with more conceptualized as up and less as down, 
including using negative numbers to represent distances below sea level. Children almost universally 
experience this up/down conceptual association before beginning to read in the directions specified 
by the literacy education of the culture in which they are being raised (e.g., left/right in English, 
right/left in Hebrew and Arabic, up/down in Chinese). Thus, how these number line differences 
appear in learners’ environmental math and how these might affect development of learners’ 
numerical conceptions warrant careful consideration in mathematics learning research (Nurnberger-
Haag, 2015b). 

Varied colors symbolize the valence of numbers in chip models, such as positive/negative 
pairings of yellow/red (Van de Walle et al., 2019) or black/red (Lappan et al., 2014). Additionally, 
algebra tiles are designed to represent variable expressions and equations through area models 
distinguished by shape and color, however, companies have not used a consistent paired-colors 
approach. Each brand of algebra tiles represents each positive area with a distinct color and shape so 
positive values are represented with multiple colors simultaneously (e.g., units, X, X2, Y, XY, Y2 are 
six different colors). In contrast, the opposite side of each of these tiles is red, regardless of brand. 
Thus, it seems that all brands agree that negative values are conceptually consistent with the color red. 

In spite of these variations, analyses of which tools teachers use as chip/cancellation models 
are missing from our field. Such detailed analyses of the features of blocks, chips, or tiles may seem 
irrelevant because mathematically, any color could be assigned to represent or symbolize positive or 
negative quantities. However, cognitive science research about colors in relation to general concept-
learning and cognition have found color-associations matter for learning and warrant continued study 
(Mehta & Zhu, 2009; Schoenlein & Schloss, 2022; Sweller et al., 2011; Zhou et al., 2021). For example, 
in real life outside of a mathematics classroom, green is often thought of as go and red as stop, black 
is considered the typical font color for text with white space as the negative space or absence of color, 
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and black represents non-negative values in finance with red font associated with debt. Consequently, 
the color associations of integer tools could matter for learning this difficult topic. Therefore, to begin 
such research we asked teachers what specific tools they used for chip models. 
 
Integer Contexts 
 

Teachers use contexts to connect to students’ personal experiences and apply mathematics to 
solve real-life problems (Wernet, 2017). Yet, some have cautioned and questioned the authenticity of 
the contextual tasks used for math instruction, because it can have the unintended effect that instead 
of modeling the real world, students might believe math is incompatible with the real world (Palm, 
2006). Common contexts for the instruction of negative numbers include elevation, temperature on a 
thermometer, money and debt, games, or a balloons/weights context (Lappan et al., 2014; Pettis & 
Glancy, 2015; Van de Walle et al., 2019; Whitacre et al., 2011). Many school-based negative number 
problems involve contexts that, in real life, people think through using whole numbers, which renders 
such contextual problems inauthentic (Whitacre et al., 2011). Thus, asking teachers what contexts they 
use for integers would be important to guide or prioritize future research and practical 
recommendations about contextual integer tasks. 
 
Purpose of Study 
 

Much of the research on integer learning has been about (a) how adults and children think, or 
misconceptions they have (e.g., Bofferding & Farmer, 2019; Bishop et al., 2014; Chiu, 2001; Ryan & 
Williams, 2007; Vlassis, 2008; Whitacre et al., 2017); (b) studies evaluating particular instructional 
approaches implemented by or instigated by researchers, rather than teachers (e.g., Bofferding, 2014; 
Linchevski & Williams, 1999; Stephan & Akyuz, 2012; Thompson & Dreyfus, 1988; Tsang et al., 
2015); or (c) analyzing integer resources posted on social media (Hertel & Wessman-Enzinger, 2017). 
In contrast, the purpose of this study was to investigate what teachers report happens in actual 
classrooms. Thus, we conducted a survey to identify resources teachers in diverse contexts use to 
teach integer operations with the following research questions: 

 
RQ1: Where have middle grade teachers obtained the resources they use to teach negative 

numbers? 
RQ2: What environmental math of negative numbers do middle grade students see in their 

classrooms? 
RQ3: Rules 

a) For which operations are middle grade students explicitly taught rules? 
b) Are middle grade students more likely to experience rules for integer multiplication and 

division than for addition and subtraction? 
c) What integer rules are middle grade students being explicitly taught? 

RQ4: Representational Tools and Contexts: 
a)  How important do middle grade teachers believe each representational tool/context is 

to their students’ learning? 
b) Which kinds of integer representational tools/contexts do middle grade teachers use? In 

what order? What tools/contexts are used to begin instruction? 
c)  Specifically, what kinds of chip and number line tools are middle grade teachers using? 

Does the frequency of chip tools with different symbolic features differ significantly? 
Does the frequency of number line orientation used differ significantly? 
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Method 
 

The survey was conducted after integer instruction took place during the second full school 
year of the pandemic (i.e., 2021-2022). During 2020-2021 the majority of teachers taught integers 
virtually, whereas during 2021-2022 almost all taught integers in-person. 
 
Participant Recruitment Process  
 

Middle grade teachers who teach negative numbers were recruited to participate in the survey 
primarily by sending emails directly to teachers whose email addresses were posted on their district’s 
website using the method of Courtney et al. (2022). To sample teachers in varied contexts who also 
taught from the same standards, we used the directory of Ohio school districts to find district websites. 
We emailed 1,242 middle grade teachers and coaches from 195 districts. Understandably, for security 
purposes many district email systems block emails with URL links such as surveys, a large number of 
recipients, or for other reasons (Mertler, 2003). Thus, for teachers in those districts, “participation was 
not a conscious decision . . . [which had a] substantial impact on the ultimate rate of response” 
(Mertler, 2003, p. 7). We cannot ascertain how many emails were blocked. 

As compensation for participation, subjects for this study could download a printable integer 
game (Nurnberger-Haag & Wernet, 2019) and a validated integer assessment (Nurnberger-Haag et al., 
2022). Participants who also gave their addresses were mailed integer dice and entered into a drawing 
for a large magnetic open number line that could be hung vertically or horizontally. 
 
Participant Contexts  
 

All 55 participants were from public schools. The contexts in which they taught were 
distributed across school typologies with 21.8% teaching in urban districts, 50.9% in suburban, and 
27.3% in rural. As is common in the United States, we also used percent allocation for free and reduced 
lunch (FRL) Title 1 guidelines as a proxy to monitor if the sample reflected diverse socioeconomic 
status (SES). The sample reflected a broad range of SES listed here from highest to least need: greater 
than 80% FRL (20% of teachers), 60-80% FRL (9.1%), 40-60% FRL (18.2%), 35-40% FRL (10.9%), 
and 15-35% FRL (21.8%). We considered 11 teachers (20%) to be teaching in a district with less than 
15% FRL—three teachers explicitly reported this, plus eight reported they were unsure (teachers are 
usually only unaware of their school’s FRL when it affects a small subset of their students). 

Teachers often teach more than one grade, so the data cannot sum to 100%. In order of 
frequency, participants identified as: Grade 7 (n=33, 60%), Grade 6 (n=20, 36.4%), Grade 8 (n=16, 
29.1%), special education or Response to Intervention (RTI) (n=4, 7.3%), and math curriculum 
specialists or coaches (n=2, 3.6%). Finally, two teachers (3.6%) reported teaching each of Grade 5, 
Gifted Education, or “Other.” 
 
Survey Questions 
 

To develop the survey questions, we considered how to best obtain answers to each research 
question within the constraints of a survey as a collection instrument while balancing ease of use such 
that teachers would be willing to start as well as complete it. The survey consisted of forced choice, 
multiple response (i.e., “check all that apply”), drag and order, Likert, and open response items. For 
example, we used the Qualtrics drag and drop ranking feature to break up the monotony of response 
type for the participant while also offering an efficient way for the teacher-participant to 
parsimoniously provide data about which models and contexts were used simultaneously with their 
curricular sequencing.  
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The first author, who has been working on integer arithmetic learning as a teacher, teacher 
developer, and/or a scholar for over 25 years drafted questions and response options. Then, the first 
author and a pre-service teacher searched educational supply company catalogs, search engines, and 
teacher sites to seek other tools, phrasing of rules, or methods. These approaches informed the survey 
response options. Additionally, each question included an “Other” option to capture unanticipated 
resources. Demographic questions were positioned at the end of the survey to avoid stereotype threat 
activation (Steele & Aronson, 1995) and to increase the chances that the most important content 
questions would be answered even if participants fatigued near the end of the survey. The forced-
choice question type was not used for these content questions, only for some demographic questions. 
The pre-service teacher and first author again revised the question wording and options before both 
authors further revised the survey. Table 1 itemizes each survey question about integer instruction and 
the response type aligned with that research question. 
 
Table 1 
 
Survey Questions and Response Type Aligned with Research Questions 
 

Resource 
Category 

Research 
Question  

Survey Question Response 
Type 

Source RQ1 If you use the textbook to teach negative numbers, what is the 
name of your textbook series? 

Open 

 RQ1 Where have you found resources for teaching negative numbers 
besides the textbooks? 

Check All 

Environmental 
Math 

RQ2   Which, if any, negative number representations could students 
see on the walls or other places in your classroom? 

Check All 

Rules RQ3a For which, if any, operations do you explicitly teach rules to 
memorize? 

Check All 

 RQ3b Which, if any, rules do you explicitly teach students? Check All 

Models & 
Contexts 

RQ4a Please click the bubble that describes how important you think 
each model or context is for students’ learning of integer 
operations. 

Likert 

 RQ4b Which, if any, negative number games do your students play? Check All 

 RQ4b Which, if any, manipulatives or experiences have you used to 
teach negative number operations? 

Check All 

 RQ4b Please choose each of the following that you use and put them in 
the order in which you introduce each model or context. 

Drag & 
Order 

 RQ4c If you help your students learn to use a number line to solve 
addition and subtraction problems, please explain how to solve 
the problem -4 – (-8) with a number line. 

Open 

  If you help your students learn to use a number line to solve 
multiplication or division problems, please explain how to solve 
the problem -4 (-8) with a number line. 

Open 

  If you use a chip model, what chips do your students use? Check All 
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Finally, prior to launching our survey, we consulted the office at our university designated for 
assisting with Qualtrics-related analyses to understand how the output of each question type would be 
exported and options for analysis to ensure we could answer our research questions. The draft survey 
was then tested for functionality on iOS and Android phones as well as Mac and PC computers by 
people outside of the research team to inform final revisions. 

Once launched, all teachers who began the survey completed the survey, including the open 
response items. This indicated to us that we had created a reasonable balance between the information 
we requested and the needs of teachers completing the survey. Some questions were worded “If you 
use this…,” so a teacher who did not use that resource could omit that question to save the teacher 
time while also allowing us to document non-use data. In general, teachers answered all standard 
questions (i.e., those without the qualifying premise), including the demographic questions at the end 
of the survey, despite this being when a participant would be most fatigued and likely to skip questions. 
Although a participant could skip any question (per Human Subjects Review ethics), based on the 
completion rates of each question, it seemed that teachers completed all questions they deemed 
relevant to their instruction. This indicated to us that we had crafted a survey that seemed reasonable 
to the teacher participants. 
 
Analysis 
 

Analyses appropriate to answering each of the four research question primarily involved 
descriptive statistics. Given the categorical nature of the data, to answer if rules were used more for 
particular operations (RQ3b) and if tool features differ significantly (RQ4c), Chi-Square Tests of 
Association were conducted, and, if significance at α <0.05 was found, effect sizes were calculated 
using φ (Cohen, 1988; Zaiontz, 2023). To answer research questions about “kinds” and “open 
response” answers, particularly regarding textbooks and rules, documentation of participants’ text-
based data was provided or summarized qualitatively. 
 

Results 
 
Where Teachers Obtained Instructional Ideas for Integers (RQ1) 
 

Almost half of participating teachers indicated they “need more resources for teaching 
negative numbers” (45.5%). Table 2 specifies the frequency organized from most to least frequent 
within each source category of textbooks, online, people they know, professional 
organizations/publications, and formal education. Formal education courses were the least common 
way teachers obtained integer resources (i.e., fewer than 13%, see Table 2). A majority, but not all 
participating teachers reported using a textbook resource when they teach negative numbers (see Table 
2). On this open response item, the 42 teachers using a textbook named 15 distinct textbook series. 
In descending order, the most commonly used textbook series reported were Big Ideas Math (n=9, 
18.8%), CPM: College Preparatory Mathematics (n=8, 16.4%), Eureka Math (n=5, 9.1%), Reveal Math and 
enVision Mathematics (n=4, 7.3%), Go Math! and Open Up Resources (n=2, 3.6%). Eight additional distinct 
textbook series were each reported being used by one teacher (1.8%).  

Most teachers (83.6%) found negative number resources online. The for-profit site Teachers 
Pay Teachers (65.5%) was reported almost twice as often as any other online source. The relative 
frequency of specific teacher blogs, Facebook groups, Pinterest, Instagram, and Twitter (now 
rebranded as X) are documented in Table 2, ranging from use by just a few teachers to more than a 
third of participating teachers. Other sources were each named by one teacher as listed in Table 2 
(1.8%). About half of participating teachers (47.3%) reported using a search engine to obtain other 
resources without remembering the exact internet source found through that search.  
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In terms of obtaining resources from people they know, the most common source category 
was other teachers or colleagues in their school, with over half of teachers reporting this. Notice the 
next most common location was due to connecting with other teachers at a workshop/conference, 
followed by other teachers or colleagues who were not at their school (see Table 2). As reflected in 
Table 2, just 14.5% obtained resources from a math coach/coordinator. Future surveys should ask if 
the teacher has a math coach in their school or district so that interpretations can be made as to what 
proportion of teachers with access to a coach obtain integer resources from them. 

In terms of professional organizations, about twice as many teachers gained ideas from local 
or state-level teacher conferences (34.5%) than the National Council of Teachers of Mathematics 
(NCTM) Annual Conference (see Table 2). In terms of professional journals, just 14.5% reported 
using the NCTM journal Mathematics Teacher: Learning and Teaching PK-12.  
 
Table 2 
 
Where or How Teachers Obtained Integer Resources 
 

Source n % 

Textbooks 42 76.4 

Online   
Teachers Pay Teachers 36 65.5 
Search Engine, but don’t remember source used 26 47.3 
Teacher Blogs 20 36.4 
Facebook 18 32.7 
Pinterest 15 27.3 
Social networking group of a council of teachers of mathematicsa 10 18.2 
Instagram 9 16.4 
Twitter (rebranded as X) 4 7.3 
Desmosb 1 1.8 
YouTube Kahn Academyb 1 1.8 
EdPuzzleb 1 1.8 
Engage New Yorkb 1 1.8 
PhET Simulationsb 1 1.8 
Georgia Standardsb 1 1.8 

Personal Relationships   
Teachers at same school 30 54.5 
Someone met at workshop or conference 14 25.5 
Some other teacher or colleague 11 20.0 
Math Coordinator/Coach 8 14.5 
Someone met in teacher education program 6 10.9 

Professional Organizations & Publications   
State or Local Teacher Conference 19 34.5 
NCTM National Conference 10 18.2 
Mathematics Teacher: Learning and Teaching PK-12 8 14.5 
NCTM Regional Conference 3 5.4 
District or Textbook-Specific Professional Development 3 5.4 
State Level Journal 2 3.6 
Mathematics Teacher (Legacy journal) 2 3.6 
NCTM Virtual Workshops  1 1.8 

Formal Courses   
Master’s  6 10.9 
Bachelor’s  7 12.7 
Doctoral -- -- 

Note. aThese data refer to councils broadly including local around a city, regional within a state such as a network 
of math specialists, regional within the country as in multi-state, or national  bData of n=1 reflect teachers who 
wrote responses to “other sources”  
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Sources of Games for Integer Operations 
 

Most teachers reported using at least one integer game (n=49, 89.1%). Teachers were not asked 
how many games they used, only the source. However, each teacher obtained games from 0 to 3 
sources (median=2), which indicates the typical teacher used at least two integer games. Table 3 
delineates where teachers obtained the games their students play. A majority of teachers printed game 
boards from the internet or other sources. Commercially manufactured physical games and games 
provided by their district-chosen textbook were each used in more than one-third of classrooms. A 
few teachers noted “Other,” and referred to online games or explained they created their own games. 
 
Table 3  
 
Sources of the Games Teachers Used 
 

Source n % 

Printable Game from Internet or Other Sources 32 58.2 
Commercially Purchased Board/Card Game   21 38.2 
Textbook-Provided Game  20 36.4 
Online Game Played by Students 3 5.4 
Teacher-Created Game  2 3.6 

 
Environmental Math Related to Integers (RQ2) 
 

Teachers could select multiple options so the totals will not sum to 100%. Teachers most 
commonly posted a number line. Furthermore, more horizontal than vertical number lines would be 
seen in classrooms. With large scale lines, more than twice as many classrooms had a long horizontal 
number line on their walls (65.5%) than a long vertical number line (27.3%). A Chi-Square Test of 
Association comparing horizontal versus vertical large-scale number lines was significant at α <.05: 
X2=16.12, p=.000059, with a large effect size (φ=0.54; Cohen, 1988). On a medium scale (e.g., 
posters), even though we combined the context-based number lines (i.e., thermometers and elevation), 
the prevalence reported for horizontal number lines on student desks or posters (40%) was again twice 
as common as vertical. A Chi-Square Test of Association comparing horizontal versus vertical of these 
medium scale number lines was also significant at α <.05: X2=4.41, p=0.036, with a near medium 
effect size of 0.28 (Cohen, 1988).  

Money or debt were reported on 18.2% of classroom walls. Fewer classrooms displayed 
posters with explanations of a chip model (10.9%) or chemical charges (7.3%). 
 
Explicit Teaching of Rules for Integer Operations  
 

A majority of teachers taught explicit rules for at least one operation (78.2%). More than half 
did so for all four operations (52.7%). At least 14 wordings of rules were identified.  
 
Rules by Operations (RQ3a-b) 
 

More than half of participating teachers reported explicitly teaching rules for addition (n=30, 
54.5%) and subtraction (n=32, 58.2%). For multiplication and division, almost three-quarters of the 
teachers explicitly taught rules (n=40, 72.7%). We hypothesized that teachers would more often teach 
rules for multiplication and division due to the simplicity and consistency of such rules in comparison 
to addition and subtraction. However, the 2 by 4 Chi-Square Test of Association of rules or not rules 
by each of the operations was not significant.  
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Which Rules Were Taught (RQ3c) 
 

One teacher wrote in “Other Rules” the importance of posting student-generated rules: “We 
do not just teach the rules . . . the kids come up with the rules and then we refer back to them.” About 
one-fifth of teachers omitted these questions, which given the phrasing of our question as “If you 
teach rules . . . ” (see Table 1), we interpreted as meaning they do not explicitly teach rules.  

Table 4 shows the 14 rules explicitly taught from most to least common. We organized these 
based on the theoretical construct of rules that expire (Karp et al., 2014): Rules That Expire (n=11) or 
Rules Valid as Stated (n=3). Two synonymous variations of the rule Keep Change Change were each 
reported by one teacher (i.e., Copy Change Opposite, Keep Add Opposite), so we consolidated these into 
the single statistic using the most common wording of Keep Change Change.  
 
Table 4 
 
Rules Explicitly Taught and Whether These are Always Valid as Stated 
 

Rule Type n (%) 

Rules That Expire  

Adding a negative number is the same as subtracting a positive number 33 (60.0) 

Two negatives make a positive 28 (50.9) 

Every time you see a subtraction sign change it to adding the opposite 26 (47.3) 

Same signs keep them; Different signs subtract the smaller absolute value from the larger 
absolute value, then take the sign of the largest absolute value 

25 (45.5) 

Same signs positive answer, different signs negative answer 24 (43.6) 

Keep Change Change 21 (38.1) 

Two minuses make a plus, Two pluses make a plus, Plus and a minus make a minus 12 (21.8) 

Music based mnemonic that included the wording: Same signs add, different signs 
subtract keep the sign of “the larger” or “the most” 

2 (3.6)a 

Negatives and positive cancel each other out.... find additive inverse pairs 1 (1.8)a 

What happens when we "get rid of" a "bad thing"? We get a good thing. 1 (1.8)a 

For adding/subtracting-using the Circle Method Same Sign Sum Different Sign 
Difference 

1 (1.8)a 

Rules Valid as Stated  

For multiplication and division: Count the number of negative signs. If the amount is 
even, the answer is positive; if the amount is odd the answer is negative. 

1 (1.8)a 

When multiplying and dividing, two negatives makes a positive. (I model this by holding 
up my two index fingers as minus signs and making them "crash" into each other to form 
a plus sign.) 

1 (1.8)a 

Minus a negative 1 becomes plus a positive.  1 (1.8)a 

Note. aData of n=1 or 2 each reflect teachers who wrote rules in response to “other rules.”  
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Teachers’ Beliefs about the Importance of Representational Tools and Contexts for Integer 
Operations (RQ4a) 
 

To answer RQ4a (How important do teachers believe each model or representational context 
is to their students’ learning?), Table 5 displays the importance teachers reported for each of the 
representational tools and contexts. 
 
Importance of Tools 
 

Number lines were rated as more important than every other tool or context. See Table 5 for 
this information. Teachers believed number lines were extremely important for integer operations 
(90.9%). No teacher said a number line model was unimportant. In contrast, almost 10% said a chip 
model was unimportant. Yet, about half believed a chip model was extremely important (see Table 5). 
Few teachers deemed a tool that combined a context with a model (e.g., balloons and weights) as 
extremely important (3.9%), whereas 19.6% said it was not important at all or they did not use this 
tool (see Table 5). 
 
Table 5 
 
Importance Reported of Tools and Contexts for Integer Operations 
 

 Extremely 
Important 
n (%) 

Somewhat 
Important 
n (%) 

Neutral 
n (%) 

Not Very 
Important 
n ( %) 

Not At All 
Important  
n (%) 

Model      
Number Line 50 (90.9%) 4 (7.3%) 1 (1.8%) -- -- 
Chipsa 30 (55.6%) 14 (25.9%) 5 (9.3%) 1 (1.9%) 4 (7.4%) 

Hybrid Tool & Context      
Balloons/Weights or 
similarb 

2 (3.9) 8 (15.7) 28 (54.9) 3 (5.9) 10 (19.6) 

Context      
Money, credits, debits, 
debt 

34 (61.8) 16 (29.1) 5 (9.1) -- -- 

Thermometer 20 (36.4) 32 (58.2) 3 (5.5) -- -- 
Elevation 14 (25.5) 29 (52.7) 10 (18.2) 2 (3.6) -- 
Chemical chargesc 5 (9.6) 9 (17.3) 28 (53.8) 2 (3.8) 8 (15.4) 

Note. aFifty-four responded instead of 55, so percents were calculated out of 54. b Four were missing 
so percents were calculated out of 51. cThree were missing so percents calculated out of 52.  
 
Importance of Contexts 
 

Financial contexts were the only context rated extremely important by the majority of teachers. 
About 90% of participating teachers rated each of financial, temperature, and elevation contexts as at 
least somewhat important (see Table 5). Only about one-fourth of teachers deemed the context of 
chemical charges at least somewhat important for learning integer operations. Moreover, 15.4% stated 
chemical charges were not important at all or not used (see Table 5). In the “Other” space, one (1.8%) 
teacher wrote “football: gaining/losing yardage.”  
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What Representational Tools and Contexts Are Used? (RQ4b-c) 
 

The prior section documented what teachers believed was important. This section reports the 
tools and contexts they actually used (RQ4). The number of models each teacher reported ranged 
from 0 to 3 with a median of 2 (mean=1.8). The number of contexts each teacher reported ranged 
from 0 to 5 with a median of 2 (mean=2.3). Combined total of tools and contexts ranged from 0 to 7 
with a median of 4 (mean=4.1). Table 6 indicates the frequencies and percentages of teachers using 
each tool or context in the order in which they began using them (RQ4b-c). Note that a “number line 
model” was used by almost all teachers, with just 7.3% not selecting number line, and a majority 
reported using a “chip model”, with 30.9% not selecting a chip model. 

The most common way teachers began integer instruction was with a number line. In fact, 
81.9% of teachers reported using a number line first or second. A little less than half of teachers 
(43.6%) reported using a chip model as students’ first or second introduction to integer operations. 
When a context was the first introduction to integer operations, money and thermometers were each 
used in 9.1% of classrooms. See Table 6 for this information. 
 
Table 6 
 
Order in Which Teachers Reported that Students Experienced Multiple Models and Contexts 
 

 1st 
n(%) 

2nd 
n(%) 

3rd 
n(%) 

4th 
n(%) 

5th 
n(%) 

6th 
n(%) 

7th 
n(%) 

Not used or 
omitted 
n(%) 

Model Tool         
Number Line 25(45.5) 20(36.4) 2(3.6) 3(5.5) 1(1.8) -- -- 4(7.3) 
Chipsa 13(23.6) 11(20.0)  6(10.9) 2(3.6) 4(7.3) 2(3.6) 2(3.6) 17(30.9) 

Hybrid Tool & Context         
Balloons/Weights 
or similarb  

1(1.8) 4(7.3) 1(1.8) 1(1.8) 2(3.6) -- -- 47(85.5) 

Context         
Money, credits, 
debt 

5(9.1) 9(16.4) 16(29.1) 6(10.9) 5(9.1) 1(1.8) -- 13(23.6) 

Thermometer 5(9.1) 5(9.1) 10(18.2)) 14(25.5) 4(7.3) -- -- 17(30.9) 
Elevation 1(1.8) 4(7.3) 11(20.0) 8(14.5) 6(10.9) 2(3.6) 1(1.8) 22(40.0) 
Chemical Chargesc 1(1.8) -- -- 2(3.6) 1(1.8) 3(5.5) -- 48(87.3) 
Game -- -- 1(1.8) -- 1(1.8) -- -- -- 
Fantasy Scenario 
Pirates & ninjas 

1(1.8) -- -- -- -- -- -- -- 

Note. aFifty-four responded instead of 55, so percents were calculated out of 54. b Four were missing 
so percents were calculated out of 51. cThree were missing so percents calculated out of 52.  
 
Tool Features: Colors of Chips and Tiles (RQ4c) 
 

When asked, “If you use a chip model, what chips do your students use?”, 48 (87.3%) teachers 
reported that students experienced at least one chip tool. Although the median number of chip types 
reported was one, due to physical and virtual options and varied color choices, the number of kinds 
of chips used in each classroom ranged from 0 to 7. We categorized each tool representation as 
consistent-meaning or inconsistent-meaning. Consistent-meaning representation of integers were those that 
(a) are a pairing commonly associated with positive and negative quantities outside of the school 
setting (i.e., black as positive assets with red as negative or debt; positive and negative signs); or (b) 
the paired colors themselves are considered opposites of each other outside of school settings (i.e., 
green and red are opposite colors on the color wheel; colors of black and white have been considered 
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opposite colors as in Yin/Yang), which can be analogous to opposite quantities. All other pairings 
that did not satisfy these criteria we considered inconsistent with real-life conceptions or inconsistent-
meaning. 

Inconsistent-Meaning or Consistent-Meaning Physical and Virtual Chips. A majority 
of classrooms using a chip model did so with inconsistent-meaning colors of physical chips (n=38, 
79.2%), and about one-fourth used inconsistent-meaning colors of virtual chips (n=13, 27.1%). When 
physical chips were used, twice as many classrooms used inconsistent-meaning (n=38) versus 
consistent-meaning (n=19) valence associations. A Chi-Square Test of Association demonstrated that 
students were significantly more likely to use these inconsistent-meanings than consistent-meanings 
valence associations with physical chips (X2=15.59, p=0.000079), with a large effect size (φ=0.57; 
Cohen, 1988). However, when they used virtual chips, there were no significant differences, because 
the same number of classrooms used inconsistent-meaning or consistent-meaning associations (n=13). 

Specific Chip Colors and Written Symbols Used. The most typical chip colors overall were 
the inconsistent-meaning red/yellow physical chips (n=35; 79.5%) and red/yellow virtual chips (n=13; 
29.5%). Table 7 displays each chip valence symbolism organized from most to least frequent within 
inconsistent-meaning or consistent-meaning. Within inconsistent-meaning, notice in Table 7 and 
confirmed with a Chi-Square Test of Association, that a red/yellow color combination was used 
significantly more than a red/white combination in physical (X2=41.50, p< .00001, φ=0.93) and virtual 
(X2=15.04, p=0.00010, φ=.56) formats, both with a large effect size (Cohen, 1988). Two teachers 
indicated in “Other” that the specific color does not matter, as is found within and between algebra 
tile manipulative brands. 
 
Table 7 
 
Chip Tool Symbolisms Teachers Used 
 

Positive/Negative Physical 
n (%) 

Virtual 
n (%) 

Inconsistent-Meaning    
Yellow/Red 35 (72.9%) 13 (27.1%) 
White/Red 4 (8.3%) -- 
Any Color/Red -- 1 (2.0%) 

Consistent-Meaning   
+/- Symbols 9 (18.8) 10 (20.8) 
Black/Red 6 (12.5%) 4 (8.3%) 
Black/White 4 (8.3%) -- 
Green/Red  4 (8.3%) 3 (6.3%) 

Note. Percent of chip users (n=48) 
 
The consistent-meaning written symbols of +/- were more frequently used than any colors 

with consistent-meaning (see Table 7). The most common consistent-meaning colors of physical chips 
were red and black, yet this was reported by a small number of chip-using classrooms (12.5%). All 
other chip types were selected by four or fewer teachers. The only teachers who used green and red 
were those who stated that their textbook (i.e., enVision Mathematics) used these colors. One of these 
teachers said they used this color-coding in conjunction with a +/-symbol; however, no other teachers 
stated that they simultaneously used written symbols and color. A Chi-Square Test of Association 
confirmed that when teachers used any consistent-meaning chip, whether virtual or physical, there 
were no significant differences among the frequency of symbol type.  
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Tool Features: Orientation of Number Line Representations (RQ4c) 
 

Earlier we documented the prevalence of horizontal lines in the static environmental math. 
Here we report the orientation of the number line used as tools to calculate integer problems. On the 
open response integer subtraction number line task, teachers used a horizontal number line (n=28, 
50.9%) most frequently and a vertical number line least frequently (n=3; 5.5%). About 10.9% of 
teachers used wording such that a student could flexibly use that process on either a vertical or 
horizontal number line. About one-third (n=18; 32.7%) either explained without actually using a 
number line (e.g., rules), stated that they do not use number lines for a subtraction problem like this, 
omitted the question, or provided a line orientation that could not be interpreted. A 2 by 3 Chi-Square 
Test of Association comparing subtraction on a horizontal number line, vertical line, or with language 
that could be flexibly used on any number line was significant at α<.05: X2=38.95, p<0.00001, with a 
large effect size φ = 0.84 (Cohen, 1988). Given that horizontal language was used more than nine 
times more often than vertical, and almost five times more often than flexible wording, the horizontal 
direction was the significant orientation. 

Seven teachers used a number line for multiplication: horizontal (n=4; 7.3%), vertical (n=0), 
and three (5.5%) used flexible wording that might work on either horizontal or vertical number lines. 
There was an insufficient sample of teachers who used number lines for multiplication/division to 
conduct a Chi-Square Test of Association for orientation. 
 

Discussion 
 

The diversity of the range of contexts —(a) all school typologies from rural to urban; (b) 
schools with greater than 80% FRL to less than 15% FRL and (c) 15 textbooks—lent trustworthiness 
to this first study designed to understand the resources used in current practice influencing United 
States middle grade students’ integer arithmetic learning. 
 
Sources of the Instructional Methods Students Experience 
 

In the results, we documented every source of integer instructional resources (RQ1) grouped 
by type. Here we discuss the most popular sources in relation to prior research. Teachers Pay Teachers 
(66%) was second in popularity only to textbooks (76%). Moreover, given that districts choose 
textbooks, not individual teachers, if we consider only sources for which teachers have the agency to 
choose for themselves where and how to obtain ideas, Teachers Pay Teachers was the preferred 
source. No other sources were used by a majority of teachers. About half obtained resources from 
teachers in their school or online searches, without recalling the specific source. Teacher blogs, 
local/state conferences, and Facebook groups were each used by approximately one-third of teachers. 
The popularity of these sources in our middle-grade-specific study was aligned in order but not in 
magnitude with the results of an elementary study (Shapiro et al., 2019). The fact that our study was 
conducted after teachers had to for a time exclusively teach online and we found the same order of 
resource use as Shapiro et al.’s (2019) pre-pandemic study—yet the percent of teachers valuing each 
source in our study was 15-20% less—we suspect that this was a difference of middle school versus 
elementary. This suggests to us that to provide insights about how to best support teachers of math 
at different grades, future research should analyze all grade bands in the same study.  

In contrast, instructional sources with verifiable expertise (e.g., math coaches, university 
courses, professional development, national/regional conferences, journals) were each reported by 
fewer than one-fourth of teachers. This may simply be due to the specificity of the topic of integers; 
that is, although responding teachers may have obtained resources for other topics through these 
sources, resources were not available for integers. Alternatively, it may be that the teachers less 
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frequently used such vetted resources overall (Education Week Research Center [EWRC], 2014). 
Although only 15% of teachers in our study obtained integer resources from a math coach, given that 
teachers value other teachers’ expertise (EWRC, 2014; Wilhelm et al., 2016), we suspect these data 
would be higher if more districts invested in math coaches.  
 
Rules that Expire Used in a Majority of Classrooms 
 

Interestingly, the proportion of teachers (about one-fourth) who explicitly avoided teaching 
negative number rules was consistent with the proportion of teachers who used sources with verifiable 
expertise. Given that mandated testing occurs many weeks before school ends, future studies should 
uncover if even teachers who believe in student-generated mathematics teach rules to cover all 
standards prior to testing. This may be especially true for integers because most of these standards are 
embedded within rational numbers, so students must master integer arithmetic quickly in order to still 
cover negative fractions.  

Although almost three-quarters of teachers reported explicitly teaching rules for multiplication 
and division compared to over half for addition and subtraction, these rates did not differ significantly 
(RQ3). Unfortunately, according to the “rules that expire” construct (Karp et al., 2014), almost all of 
the rules used were inaccurate. Perhaps most troubling is that six of these were each used in 38 to 
60% of classrooms (see Table 3). Two negatives make a positive—a rule Karp and colleagues (2014) 
specified as a rule that expires because it is valid only for multiplication and division—was the second 
most common rule found in our study and was used by half the teachers. The rule Keep Change Change 
leads to misapplications, because it is valid only for subtraction and only a useful strategy if subtracting 
a negative number. Thus, it is problematic that this rule was used in 38% of classrooms. Karp et al. 
(2015) asserted the procedural rule to invert and multiply fractions is a rule that expires because it is 
not always necessary. Thus, we viewed the rule to change all subtraction signs to adding the opposite 
as an analogous rule for integer arithmetic, which almost half the teachers used. Two opportunities 
for future research would be to include a) an open response item or interviews about how and why 
rules are taught and b) questions about whether rules are posted, and if so, if these posters were 
student-created, teacher-created, or commercially produced—as indicated by the criteria of the 
Environmental Math Framework (Nurnberger-Haag et al., 2019) and as advised by a teacher in the 
results section.  
 
Carefully Select and Sequence Tools, Contextual Tasks, and Environmental Math  
 

To our knowledge, this study was the first to investigate the number and sequencing of 
multiple models and contexts that students experience during integer instruction. Students typically 
experienced four models and contexts, with more than 90% using a number line and a little less than 
half using a chip model. The sequence in which teachers reported using models was consistent with 
their stated beliefs in that number lines and chip models were prioritized early (i.e., first or second). 
Instruction that used a number line first was consistent with findings of a recent quasi-experimental 
study of intact classes that had not yet learned integer arithmetic. Eight classes were randomly assigned 
to researcher-led instruction with a specific number line or specific chip model as their first experience 
with integer arithmetic (Nurnberger-Haag, 2015a). This study found those students who experienced 
a particular number line (i.e., Nurnberger-Haag, 2007) as their first model rather than the chip model 
learned significantly more with a large effect size (Nurnberger-Haag, 2015a). Thus, more research is 
needed to assess the learning impacts and students’ perspectives on their experiences with the varied 
sequences of 0 to 7 models and contexts. 

Considering the concerns about the inauthenticity of negative number contextual tasks 
(Whitacre et al., 2011) and that almost all teachers in our study thought context was important for 
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integer learning, stakeholders should create criteria and resources about which contextual tasks are 
productive for this abstract topic. Wernet’s (2017) operationalization of Palm’s (2006) framework for 
task authenticity could be a useful framework to begin this work specific to integers. A contextual-
based integer model of balloons/weights (or similar) also warrants learning outcomes research, 
because it was used in about 20% of classrooms. Although about 90% of teachers rated each of 
financial, temperature, and elevation contexts as at least somewhat important, only about one-fourth 
deemed chemical charges at least somewhat important. This was interesting given that students must 
use negative numbers to learn chemistry. Collaborations of mathematics and science education 
scholars, as well as teachers, could determine if chemical charges should be sequenced after learning 
integer arithmetic or what if any, types of tasks involving chemical charges support students during the 
process of learning integer arithmetic. In other words, in consideration of STEM learning more 
broadly, does the science of chemistry and mathematics learning benefit from integrated instruction 
at the time of integer arithmetic learning despite the abstract nature of chemistry? Or should 
proficiency with negative numbers precede chemistry instruction to ease chemistry learning and 
further deepen student understanding and applications of negative integers?  
 
Number Line Features 
 

Given that students must be proficient with vertical and horizontal number lines as well as 
simultaneous coordination of these orientations, we were surprised by the degree to which horizontal 
number lines dominated students’ learning opportunities with operations and in their environmental 
math (e.g., posters, large-scale lines on classroom walls). Recall that this difference was statistically 
significant with a large effect size when compared to vertical lines. Moreover, horizontal number line 
language dominated over language that would support students to operate flexibly on any number 
line. Thus, just as an overemphasis on limited orientations of shapes inhibits students from accepting 
other valid variations of shapes (Nurnberger-Haag et al., 2020; Sinclair & Moss, 2012), we suspect an 
overemphasis of horizontally oriented number lines would impact student understanding of vertical 
number lines and Cartesian graphs. Indeed, anecdotally in the first author’s experience, even many 
adults who are teachers or administrators participating in integer professional development have 
struggled to correctly orient numbers on the floor when asked to use a vertical orientation. The 
evidence of our study suggests that this horizontal orientation being conceptually dominant likely 
begins at least by middle school. Future research should investigate elementary classroom orientations 
of number lines. 

These avenues of research might be especially important in light of embodied cognition and 
attempts to begin instruction in ways that capitalize on learners’ experiences outside of school. Based 
on embodied cognition, it has been argued that integer instruction should begin with a vertical number 
line because this direction would be more intuitive than associations determined by privileging the 
direction of written English text—as opposed to Hebrew, Arabic, or Chinese (Nurnberger-Haag, 
2015b). Usually, humans experience the concept of “more” as increasing in height, that is, a conceptual 
metaphor of embodied experience “more is up” (Lakoff & Johnson, 1980; Lakoff & Nunez, 2000). 
Consider, the conceptual metaphors of how we think are often revealed through our unconscious and 
unexamined language (Lakoff & Johnson, 1980). For instance, people say, “Costs are going up!” not 
“Costs are going to the right!,” and “Price drop!” not “Price left!.” Due to repeated exposures, by 
middle school, students may have memorized an association that a number line is horizontal, so it 
might seem that using horizontal lines would build on their prior knowledge. From an embodied 
theory of cognition, however, beginning the difficult topic of negative numbers on a vertical number 
line may better tap into students’ deeper conceptual understanding—developed since early childhood 
that “more” is up and “less” is down. Connecting to students’ conceptual resources in this way may 
reduce cognitive load and warrants further study.  
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Chip Features 
 

Features of the learning environment and tools such as color can support or interfere with 
thinking and learning (Mehta & Zhu, 2009; Sweller et al., 2011), so specific color associations for 
concept learning warrant continued investigation (Schoenlein & Schloss, 2022; Zhou et al., 2021). 
Incongruent color associations can unproductively increase the cognitive load while learning (Sweller 
et al., 2011) and interfere with long-term memory retrieval (Zhou et al., 2021). Color-consistent 
associations, however, support retrieval (Zhou et al., 2021). Given these insights on color-associations 
from cognitive science, important findings of this study were that the most common chips used were 
significantly more likely—with a large effect size —to have inconsistent-meaning color-associations. 
Such color-associations may interfere with learning because such school-based tools require students 
to memorize which color represents each valence, rather than using their existing out-of-school color-
associations as a resource for their learning. 

Inconsistent-Meaning Valence Associations. Given that yellow/red and white/red are not 
opposite colors, we question the use of these pairings as analogs for opposite quantities. Rather than 
opposites, yellow and red are two primary colors and are considered warm colors (Westland et al., 
2007). However, this color combination was used in significantly more classrooms than any other to 
signify opposite numbers. Although we did not ask teachers why each color-pairing was chosen, one 
reason offered in the “Other” space for the yellow/red chips was that these were the manipulatives 
they had at their school. The chips shown in the most popular methods textbook for elementary and 
middle grades also show these yellow and red manipulatives (see Van de Walle et al., 2019) and all of 
the surveyed teachers taught in a state in which an instructional support document showed yellow and 
red chips. Consequently, although neither the methods text nor the state education document told 
teachers to use these colors, the illustrations might foster the mindset or impression that using a chip 
model means using these colors. However, we consider these to be arbitrary color-associations. 
Indeed, one teacher who used such color-valence mappings stated the reason they no longer use a 
chip model was because their students could not remember which color represented which valence. 
Thus, informed by cognitive science research, these data suggest that yellow/red color associations 
may have increased students’ cognitive load in ways that interfered with learning.  

Consistent-Meaning Valence Associations. Conceptual analyses of the valence 
associations provide interesting and important opportunities to investigate (a) cultural or individual 
preferences, (b) whether there are optimal valence associations for learning, or (c) if any valence 
association can be effective as long as students believe the association is meaningful to them, that is 
consistent with meanings outside of school. The consistent-meaning valence associations we found 
were +/- symbols and color pairings of black/red, black/white, and green/red. If any of these 
consistent-meaning valence associations were chosen, the frequency of which meaning was not 
statistically significant. In practical terms then, similar numbers of teachers preferred each consistent-
meaning representation. Thus, it would be important to investigate learning impacts related to each of 
these consistent-meaning representations.  

These data inform scholars about future study-design choices to determine which consistent-
meaning valence associations impact learning and in what ways. The most common consistent-
meaning associations were + and – symbols inside circles, which about one in every five classrooms 
used. Given that even for young children teaching them to abstractly name patterns —such as ABBA 
or ABA— facilitated pattern learning (Fyfe et al., 2015), we wonder if using the abstract +/- symbols 
alone or in addition to color might better facilitate middle grade learning of integer arithmetic with a 
chip model. Black and white as opposites have been taught to children since their infant board books, 
so black chips as positives and white chips as negatives may foster the concept of opposite numbers. 
Yet, only four classrooms in our study used this physical black/white chip-color combination. 
Although middle school students may not already think of black/red as conceptual opposites, teaching 
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these associations prepares them to understand finances. Black/red chips were used in only one of 
every eight classrooms (see Table 7) despite almost all teachers declaring financial contexts important. 
One study that showed significant learning gains with a chip model began instruction with black/white 
chips before teaching students the black/red business application and then each day students chose 
for themselves which consistent-meaning chips to use (Nurnberger-Haag, 2015b).  

Although students —potentially since infancy —may think of stop and go as opposites, we 
wonder if the green/red color combination promotes the cancellation idea necessary to conceptualize 
sums of additive inverses as zero. On the other hand, students who are artists might benefit from 
symbolizing opposite integer values in ways that capitalize on their knowledge that green and red are 
literally opposite of each other on the color wheel (Westland et al., 2007). Thus, there are many 
potential avenues of research to investigate embodied and individual similarities and differences to 
better understand how we can support all students’ learning of integer arithmetic. 
 

Conclusions 
 

This study expanded the integer learning knowledge base to describe what students see about 
negative numbers on a daily basis on their math classroom walls and other spaces (environmental 
math; RQ2), how and which rules they are explicitly taught (RQ3), the tools and contexts used and in 
what order (RQ4), and where teachers obtained games and other resources they use (RQ1). The results 
of this study revealed many important avenues for future research, teacher education, resource 
development, and instructional advice for teachers.  

 
Learning Affordances and Constraints of Tools, Tricks and Topics Requires Research 
 

This data informs directions for future research to ensure analysis of learning affordances and 
issues are directly relevant to the tools, tips, and topics used in actual integer instruction. Given that 
almost all teachers in our study used classroom games for integer learning, greater attention to research 
on mathematics classroom games, rather than online games, is warranted. A limitation of the data 
collected about classroom games was that the survey questions focused on the source aspect of games 
(e.g., commercially bought), rather than the features of the games. Such investigations of integer games 
and other topics would benefit from using the Mathematics Classroom Games Features Framework 
(Nurnberger-Haag et al., 2023) as an analytical tool. Our study also contributed insights about teachers’ 
current mathematics-related social media use, on which scholars can continue to build (see 
Discussion). 

Reliance on text-based orientations determined by the arbitrary language in which a person is 
raised (i.e., left-to-right language and left is less, right is more) over conceptions of number lines 
consistent with most humans’ real-life embodiments of quantity (i.e., up is more, down is less) 
dominated student experiences just as inconsistent-meaning valence associations of chips were 
experienced over consistent-meaning valence associations (see Discussion). Research is needed to 
advise stakeholders—the committees and authors who create model curricula and methods textbooks 
for teachers and student textbooks—about which tools and in what sequence might better support 
student learning of this very difficult topic. We suggest that studies investigate the learning implications 
of features of tools: which direction of number lines and what color or symbol combinations are 
cognitively most easily associated with positive and negative concepts. This could reduce unnecessary 
cognitive load so that students can more easily attend to developing the intended mathematical 
concepts. 
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Practical Implications: Mitigate For-Profit Influences on Integer Learning in the United 
States 
 

The majority of teachers used for-profit integer resources, which they may buy themselves. 
United States teachers, who are underpaid as it is, should not have to resort to purchasing resources. 
We must recognize that the majority of teachers found integer resources online (83%) with Teachers 
Pay Teachers (65%) being the most common source; whereas, only three to 16% of teachers found 
an integer resource in a peer-reviewed teacher journal or a university course. Teachers trust other 
teachers (EWRC, 2014; Wilhelm et al., 2016). Thus, to improve instruction of this difficult topic, based 
on the findings of this study, those who have expertise about negative number teaching and research 
may need to think more creatively about how to reach teachers—by going where teachers seek 
resources and disseminating through people they trust. For instance, Teachers Pay Teachers will 
continue to be used by a majority of teachers, so perhaps it will be necessary in the future for 
researchers and teacher teams to determine how they might use this site to post vetted resources. 
Moreover, how might researchers work with teacher leaders across the country to support 
dissemination through state/local conferences or popular teacher blogs because, based on our study, 
each of these venues might reach about one-third of teachers. 

With this study, we intended to understand what resources are being used in middle school 
classrooms for integer instruction. It was only after we reviewed the data across multiple resource 
categories (e.g., games, posters, rules, tools) that we recognized a potential trend with a broader 
implication: for-profit agents may be strongly influencing students’ negative number instructional 
experiences. Although it is unlikely that we could influence educational resources and producers for 
all mathematics topics, perhaps as scholars, teacher educators, and instructional coaches we might be 
able to counteract the for-profit influences for the single topic of integer arithmetic. Almost half of 
teachers said they needed more resources. Therefore, we believe addressing these problems requires 
a two-pronged approach: a) create more vetted and practical resources for negative number instruction 
and b) disseminate these resources in ways that allow teachers to spend time planning for 
implementation rather than searching for resources. In light of prior research and the findings of this 
study [i.e., almost all integer classrooms use games and horizontal number lines, a majority use rules 
that expire, and chip models most often used inconsistent-meaning (arbitrary) colors], we recommend 
the following for classroom instruction and teacher education: 

 

• Avoid integer rules that expire (e.g., Table 4; Karp et al., 2014, 2015); have teachers and 
students analyze integer rules to discover whether these are always, sometimes or never true 
(Muir, 2015); 

• Ensure integer games have chance (e.g., dice, spinners) and turn-taking to avoid marginalizing 
any students (Nurnberger-Haag et al., 2023); 

• Use vertical number lines more than horizontal to mitigate the overuse of horizontal lines in 
classroom environmental math and as a calculation tool with negative numbers; To prevent 
overexposure prior to negative number instruction, we must similarly influence elementary 
stakeholders. 

• For a chip model, discuss consistent-meaning options from Table 7 and allow students to 
choose the consistent-meaning valence association that makes learning easiest for them; Some 
low-cost options include:  
o Single-sided tiles can be easily found as bingo chips or made with colored cardstock 
o Two-sided tiles  

o Black/white can be found by searching for “Reversi” game replacement chips  
o Black/red chips are now being sold by an educational supply company, or 
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o Glue two colors of cardstock before cutting into square tiles 
o Drawing (lowest cost option): Students can draw black/white or +/- chips or tiles easier 

than other valence associations 
 
Final Thoughts 
 

The instructional and research recommendations offered here, although extensive, seem 
feasible because as a field we need only influence just the two United States grades currently tasked 
with negative number instruction: Grades 6 and 7. We are optimistic that together as teacher 
educators, coaches, teachers, researchers, and state-level committee members we could shift away 
from for-profit influences to foster proficient integer knowledge by the end of Grade 7. 
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