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ABSTRACT 
 
Proofs are attempts to conclusively demonstrate the validity of the claim for all cases indicated 
within its domain, which implies that proving should involve thoughtful consideration of the 
domain. This study analyzed the enactment of three general claim tasks, or tasks where the domain 
of the claim referred to an infinite number of cases, that were used during an introduction-to-proof 
teaching experiment with 10 ninth grade students. We analyzed the tasks in terms of the 
opportunities students experienced to engage in reasoning-and-proving and attend to the domain 
of the claims. The use of general claim tasks provided students with opportunities to engage in 
varied reasoning-and-proving activities, including forms not typically found in textbooks. Students’ 
attention to the domain of the claims increased over the course of study as a result of the teacher-
researcher’s continued focus on this aspect of the tasks, although their attention did not always 
encompass all cases within the domain. By making the domain of mathematical claims a central 
focus, we emphasize its important role in the reasoning-and-proving opportunities afforded to 
students and contribute to an understanding of students’ early interpretations of this aspect of proof 
tasks. 
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Introduction  
 

The types of reasoning-and-proving tasks given to students impact their learning opportunities 
and shape the way in which they are able to reason about the mathematical content. With respect to 
reasoning-and-proving tasks used in high school geometry, students’ opportunities are influenced not 
only by the validity of the claim, but also by the number of cases indicated within the domain of the 
claim (a single case, multiple but finitely many cases, or infinitely many cases) (Stylianides & Ball, 
2008). For instance, claims involving a single case (e.g., prove a given triangle ABC is congruent to 
triangle DEF) can be essentially proven or certainly disproven by measuring the given sides and angles, 
whereas claims involving infinitely many cases (general claims) provide an intellectual necessity for a  
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deductive approach1. In other words, since general claims cannot be proven using examples 
(Buchbinder & Zaslavsky, 2019), they are particularly well-suited to motivate the need for deductive 
reasoning (Otten, Gilbertson et al., 2014). 

In addition to motivating deductive reasoning, general claim proof tasks in high school 
geometry courses can allow students to consider fundamental mathematical ideas. Because a proof of 
a general claim eliminates the possibility of counterexamples, it can result in the prover’s ability to say 
with absolute certainty that a mathematical statement is true for all cases within the domain of the 
claim (e.g., Ellis et al., 2012; Fischbein, 1982). This is not to say that the production of a proof 
necessarily convinces a student the claim is always true (Rodd, 2000), just that it offers a level of certainty 
not afforded by examples. The ability to know with absolute certainty that a claim is always true is one 
way that mathematics (and physics) distinguishes itself from the biological sciences (Schoenfeld, 2000). 
Additionally, the use of both general and particular claims allows students to reflect on the number of 
cases encompassed within its domain, a worthwhile endeavor in and of itself that does not receive 
sufficient attention (Mason, 2019). Finally, the use of general claims reflects the broader practice of 
mathematicians who seek to pose and prove conjectures that encompass as many cases as possible.  

Given the benefits of general claims, it is unsurprising that they are commonly used in studies 
focused on secondary students’ understanding of proof and their ability to construct proofs (e.g., 
Buchbinder & Zaslavsky, 2019; Chazan, 1993; Healy & Hoyles, 2000; Knuth et al., 2009). This focus 
on general claims is not reflected within the reasoning-and-proving opportunities provided in 
textbooks. Otten, Gilbertson et al. (2014) analyzed U.S. high school geometry textbooks and found 
that student exercises involve particular claims much more than general claims. The discrepancy 
between the domain of claims used in proof tasks by researchers and those found in geometry 
textbooks highlights a need to better understand how the use of general claim tasks potentially impacts 
students’ opportunities to (1) engage in the reasoning-and-proving process and (2) consider the 
domain of the claims being proven. Thus, this study examined a series of general claim tasks used 
during an introduction-to-proof teaching experiment with ten ninth grade students in the Midwest 
United States. Specifically, we examined the learning opportunities of proof-related tasks, as set up by 
the teacher-researcher, implemented with students and how students attended to the domain of the 
claims, evidenced in their written and verbal work. By making general claim proof tasks an explicit 
item of focus, we seek to promote greater understanding of the relationship between the domain of 
the mathematical claim and students’ learning opportunities.  
 
Defining Key Terminology 

 
Reasoning-and-proving is used to refer broadly to all of the activity that goes into establishing the 

truth-value of a claim, from proposing a conjecture and investigating the validity of the claim, to 
constructing a proof or providing a justification that does not reach the level of a proof (non-proof 
rationale) (G. J. Stylianides, 2008). The term proof refers to “a mathematical argument, a connected 
sequence of assertions for or against a mathematical claim” that uses acceptable justifications, valid 
modes of argumentation, and representations that are appropriate and understood by the classroom 
community (A. J. Stylianides, 2007, p. 291). Although Stylianides (2007) focused on the classroom 
community in an elementary setting, in the present study we interpreted the terms “valid”, 
“acceptable”, and “appropriate” according to both the classroom community and the broader 

                                                       
1 There are specific mathematical claims that require deductive reasoning (e.g., prove that 2191 – 1 is prime); however, these 
claims do not tend to be located in high school geometry textbooks. Within secondary education, claims occasionally fall 
into a separate category when they ask students to prove a claim for a relatively small number of cases (e.g., for numbers 
1-20; see Knuth et al., 2009). For these tasks, students can reasonably check every single example (proof by exhaustion). 
That said, these claims tend to be numerical and are not typically used in high school geometry courses. 
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mathematics community because the context of secondary mathematics marked a shift toward formal 
proving. Additionally, we use the term proof as an adjective describing the tasks where students were 
expected to construct a proof and the term argument to refer to students’ verbal or written work made 
in response to a proof task. Note that the term argument does not carry judgment about the quality of 
students’ response or the extent it is aligned with Stylianides’ (2007) and our definition of proof. 

Recall that the domain of mathematical claims refers to the number of cases implicitly or explicitly 
referred to in the mathematical statement or theorem. Fischbein (1982) articulated the important role 
the domain of claims has in the proving process saying, “The level of generality of the theorem is then 
explicitly defined by the theorem itself and the proof refers exactly and clearly to that level of 
generality” (p. 15). In other words, theorems and statements to be proven indicate the domain of the 
claim (level of generality) and proofs demonstrating the validity of a given claim must clearly 
demonstrate it for all cases included within the domain of the claim. We continue with Otten, 
Gilbertson, and colleague’s (2014) use of the terms particular and general statements to distinguish between 
proof tasks involving claims that reference a single case (particular statements) and those that 
encompass an entire, often infinite, set of cases (general statements). Geometric proof tasks that fall 
under the latter category typically use the quantifiers “all”, “every”, or “a” (i.e., “an arbitrary case”) to  
indicate the domain of the claim. 
 

Theoretical Perspective and Literature Review 
 
Opportunities to Learn 

 
Although there is a large body of literature focused on the teaching and learning of proof, few 

studies have specifically focused on students’ opportunities to learn reasoning-and-proving with 
respect to the domain of the mathematical claims. Opportunity to learn originally referred to whether 
students, prior to being assessed, solved mathematical problems similar to those contained in the 
assessment (Husen, 1967, as cited in Floden, 2002). It is important, however, when determining 
students’ opportunities to learn how to solve a certain type of problem, to disentangle the content 
topic of the problem and the specific formulation of the problem (Floden, 2002). In other words, it is 
one thing for students to be exposed to the mathematical ideas necessary to solve a problem; it is 
another thing for them to have practiced the exact type of problem presented in an assessment. As 
discussed above, proof tasks involving general claims may deal with mathematical content that is 
familiar to students, but their prior experiences may have been formulated with particular claims or 
situated within learning opportunities that did not draw attention to the domain of the claim. 

The opportunities to learn framework can be particularly powerful when analyzing 
mathematics classrooms and instructional interactions given its demonstrated ability to connect 
teaching and learning (Hiebert & Grouws, 2007). The value of this perspective has emerged since the 
1960s as opportunity to learn has come to be framed as more than topic coverage or problem-type 
familiarity; one can consider the topics together with the level of cognitive demand students’ 
experience (Gamoran et al., 1997), the topics combined with the classroom learning environment 
(Tarr et al., 2013), or the interactions that occur in the classroom while topics are being taught (Jackson 
et al., 2013). In this study, we take the latter approach as we move beyond studying opportunities in 
textbooks (as summarized in the following sections) to a consideration of the opportunities that 
students have to think and discuss the reasoning-and-proving process as they work on tasks. In 
particular, we analyze the opportunities to engage in the reasoning-and-proving process within the 
tasks as launched by the teacher-researcher and in students’ engagement in the tasks in order to allow 
for possible differences between the tasks’ potential and realized opportunities (Stein et al., 1996).  
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Students’ Attention during Mathematical Tasks 
 
While it is certainly important for students to engage in the desired forms of reasoning-and-

proving in order to increase their opportunity to learn this mathematical practice, doing so does not 
necessarily ensure that the intended learning will occur. Mason (2008) contended that “what teachers 
can do for learners, indeed perhaps the only thing they can actually do for learners, is to direct learners’ 
attention [italics in original]” (p. 31). Ingram (2014) agreed, noting that students’ attention can be 
influenced by features of the task and the interactions they have with teachers. Yet, even in instances 
where students and the teacher are collectively working on a single task, there is a potential for 
miscommunication to occur due to differences in where their attention is focused (Mason, 2008). 
When considering students’ attention, one can focus on where that attention is directed but also the 
structure of attention. Structures of attention, according to Mason, include “holding wholes, 
discerning details, recognizing relationships, perceiving properties and reasoning on the basis of agreed 
properties” (2008, p. 35).  

In order to understand the differences in the way that novices and experts attend to 
mathematical ideas, Mason and Davis (1988) coined the term “shifts in attention”, which they defined 
as a moment, either sudden or gradual, “in which one becomes aware of what used to be attended to 
was only part of a larger whole, which is at once, more complex and more simple” (p. 488). During 
the proving process, students should begin shifting their attention away from specific details in 
examples or diagrams, towards a focus on generalizing through attention to mathematical relationships 
(Ellis, 2011). When interpreting mathematical statements being proven, students should recognize that 
the words all, every, and any indicate the impossibility of an exception that satisfies the criteria in the 
hypothesis but contradicts the conclusion (Harel & Sowder, 2007). Diagrams play an important role 
in many geometry proof tasks. Using diagrams when proving a general claim requires the ability to 
view the diagram as both an expression of generality (that is, a representation of all diagrams indicated 
within the domain of the claim) and as an object that can be manipulated (through rotations, adding 
notation, axillary lines, etc.) (Mason, 1989). Teachers can interpret diagrams as figural concepts, 
possessing both spatial properties and conceptual qualities (Fischbein, 1993) in part because they have 
been enculturated into the community of mathematics, wherein attending to the generality of 
mathematical claims is a central idea. In contrast, students who have not yet undergone this shift in 
attention may interpret the diagram only through the lens of its spatial properties or other features 
that are specific to the diagram drawn. Mason (1989) conjectured that “this is precisely where 
sophisticated mathematician-teachers, unaware of the momentary abstraction in themselves, miss the 
need to attend to the abstracting movement in their students” (p. 6). While it is important for teachers 
to attend to the ways that students are interpreting mathematical diagrams, shifting their attention 
towards the generality of claims is not something that a teacher can do or force onto students (Mason 
& Davis, 1988), nor is it something that can be achieved solely through calling attention to this aspect 
of mathematical claims (Mason, 2004). But students’ opportunities to engage with general proof tasks 
may provide the context in which shifts in attention can occur. 
 
Reasoning-and-Proving Opportunities in Textbooks 

 
From the opportunities to learn perspective, students’ thinking about reasoning-and-proving 

and the domain of mathematical claims is influenced by the opportunities embedded in curriculum 
materials. With respect to the introduction to proof chapters in U.S. Geometry textbooks, Otten, 
Males, and Gilbertson (2014) found that the student exercises primarily provided opportunities for 
them to investigate or pose conjectures and develop non-proof rationales, but few opportunities to 
construct a proof. Given that the introduction to proof chapter occurs early in Geometry textbooks, 
it makes sense that students’ content knowledge might limit the number of proof tasks that are 
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appropriate for the beginning of the school year. However, the limited opportunities to construct 
proofs suggests that students are developing their initial understanding of proof without actually 
engaging in the proving process. Looking at a random selection of the remainder of the Geometry 
textbooks, beyond the introductory chapters, Otten, Gilbertson et al. (2014) found that proof 
opportunities were prevalent, but they predominantly involved particular claims. The general claims 
that applied to infinite sets of geometric objects were typically presented in the textbook narrative, not 
the student exercises. 

This focus on the domain of the claims is important because, although most reasoning-and-
proving textbook studies (e.g., Fujita & Jones, 2014; Hanna, 1999; Miyakawa, 2012; Stylianides, G., 
2009) have consistently examined the type of argument elicited (e.g., empirical, generic example, direct 
proof), it is by identifying the domain of the mathematical claims (i.e., general, particular, or general 
with particular instantiation) that we can consider whether those opportunities involved claims that 
necessitate a deductive proof. As Otten, Gilbertson et al. (2014) pointed out, deductive reasoning is 
powerful enough to establish the truth of both particular and general claims, but only deductive 
reasoning is able to establish the truth for general claims. Thus general claims necessitate deduction 
to a greater degree than do particular claims. Based on the findings that general claims were relatively 
rare in student exercises in U.S. Geometry textbooks, Otten, Gilbertson et al. (2014) called for future 
research analyzing the enactment of these opportunities in order to understand the role that the 
domain of mathematical claims might play with regard to students’ experiences with proof.  
 
Reasoning-and-Proving Opportunities in Classroom Settings 

 
Research on proof instruction in secondary classrooms have primarily described whole-class 

conversations (e.g., Otten et al., 2017), providing only a snapshot into the reasoning-and-proving 
opportunities afforded to students in the classroom. Within this setting, teachers tend to spend a 
significant amount of time in their Geometry classes focusing on the details of proofs, such as whether 
each “step” in the proof contained a mathematically-correct justification and logically flowed from the 
previous statements (Martin & McCrone, 2003; Otten et al., 2017; Schoenfeld, 1988). Furthermore, 
traditional classrooms tend to operate based on specific norms around who is responsible for different 
aspects of the proving process (Herbst & Brach, 2006). For instance, students are rarely asked to prove 
their own conjectures (Boero et al., 2007); in instances where students are asked to conjecture, the 
teacher tends to confirm whether it is correct before students prove the claim (Herbst & Brach, 2006). 
In contrast to the teacher-driven reasoning-and-proving that occurred in the prior studies, Martin and 
colleagues (2005) described four classroom episodes where the teacher and students shared ownership 
in the reasoning-and-proving process. In these episodes, the teacher used revoicing and coaching in 
order to hold students accountable for contributing to the construction of the proofs. All of the whole-
class conversation captured in the aforementioned studies focused on the task at hand (e.g., 
completing the proof) with little if any conversation that afforded students the opportunity to think 
broadly about reasoning-and-proving as a mathematical practice (Otten, Gilbertson et al., 2014).  

Proof studies in secondary classroom settings have primarily occurred toward the middle or 
end of the school year; as a result, little is known about how students are first introduced to proof in 
traditional classrooms. One exception are the studies conducted by Cirillo (2011; 2014), who reported 
that six teachers introduced proof in their Geometry classrooms through a show-and-tell approach. 
During the teachers’ proof demonstrations, Cirillo noted that the teachers did not explicitly unpack 
the many different components of proof, such as how they were using definitions to draw conclusions 
or what can and cannot be assumed from a diagram. In sum, there is still a need to better understand 
ways to introduce students to proof that utilizes a student-centered approach and develops students’ 
understanding of proof through engaging in the reasoning-and-proving process, especially as those 
early opportunities relate to the domain of the claims being proved. 
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Students’ Proving in Relation to the Domain of Mathematical Claims 

 
One consistent pattern throughout proof research is the finding that a non-trivial percent of 

students construct empirical arguments for general proof tasks (Reid & Knipping, 2010; G. J. 
Stylianides et al., 2017). The construction of empirical arguments for general claims has been 
documented in studies of middle school students (Knuth et al., 2009), high schoolers (Healy & Hoyles, 
2000; Lee, 2016; Senk, 1985), and undergraduate students (Harel & Sowder, 1998). Example use 
during the proving process is not inherently bad because students can productively use examples to 
gain insights into why a conjecture is true or uncover structural relationships (Aricha-Metzer & 
Zaslavsky, 2019). Nonetheless, students’ use of examples as justification can reveal challenges in 
understanding that the goal is to construct an argument that applies for all cases, where no exceptions 
are possible (Harel & Sowder, 2007). 

There are multiple possible explanations for why secondary students tend to produce empirical 
arguments when proving general claims. First, it is possible students recognize that empirical 
arguments do not prove general claims, but still write them because they lack the mathematical skills 
to be able to construct a more general argument (e.g., Bieda & Lepak, 2009; Healy & Hoyles, 2000; 
Reiss et al., 2001). However, this explanation does not account for instances when students use a few 
examples as justification in instances when proof by exhaustion would be a valid approach (Knuth et 
al., 2009). A second possibility is that some students misinterpret or do not recognize the domain of 
a mathematical claim due to a lack of explicit language indicating that the statement applied to an 
infinite number of cases (Mason, 2019). Or, it is possible that students are attending to the quantifiers 
indicating the domain of the claim but interpret them using a “real world” rather than mathematical 
definition (Pimm, 1987). These potential explanations speak to the importance of scholars not only 
attending to the empirical or deductive arguments that students produce, but also to their 
interpretation of the claim’s domain. 

While students can productively use diagrams as a planning tool or to capture their progress 
in a deductive argument (Cirillo & Hummer, 2021), others interact with diagrams in ways that suggest 
an interpretation of the diagram as a specific example (Herbst, 2004). Like Chazan (1993), Martin and 
colleagues (2005) found that students requested a proof for a second type of triangle even though the 
claim had been proven for a generic triangle, a request that suggests a lack of realization that the 
original proof demonstrated the claim was true for all triangles. In both instances, it is possible that 
the students were attending to generic and specific features of the diagram rather than interpreting it 
as a generic example. Infrequent opportunities to produce their own diagrams may also contribute to 
students’ limited understanding of how to appropriately interpret a diagram. Although the norm of 
teachers or textbooks providing diagrams (Cirillo, 2018; Herbst & Brach, 2006) increases the 
consistency and accuracy of the diagrams students use, it limits their opportunities to reason about 
what the diagram represents or about the generality indicated within the proof claim (Komatsu et al., 
2017). 
 
Research Questions 

 
Collectively, prior research on students’ understanding of proof and the ability to construct 

proofs highlights a need for changes to the ways that proofs are taught in the classroom, particularly 
in order to fulfill the recommendations that reasoning-and-proving should be a central part of K–12 
instruction (Ministry of Education, Science and Technology, 2011; National Council of Teachers of 
Mathematics, 2009; National Governors Association & Council of Chief State School Officers, 2010). 
This study extends the textbook analysis of Otten, Gilbertson et al. (2014) by analyzing the enactment 
of three general claim tasks in terms of the reasoning-and-proving opportunities they afforded, and 
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students’ attention to the domain of mathematical claims. The research questions that guided the 
analyses were as follows: 

RQ1. What opportunities for reasoning-and-proving were present in general claim tasks set up 
by the teacher-researcher and implemented with students during an introduction to proof unit?  
RQ2. How, if at all, did students attend to the domain of the claims and what, if any, shifts in 
attention occurred over the course of a task enactment? 

Both questions were addressed through an analysis of students’ oral and written work on the tasks, 
with the data and analytic processes described in detail in the next section. 

 
Method 

 
Participants and Data Collection 
 

Ten students participated in this study—seven females (Amanda, Arin, Heather, Lauren, Lexi, 
Megan, and Sadie) and three males (Brian, Clay, and Wilson; all pseudonyms). They were the only 
students enrolled in an accelerated ninth grade mathematics course at a rural, public school in the 
Midwest United States. The accelerated program covered Algebra 1 and 2 content in ninth grade; 
subsequently, the study provided the students first formal high school Geometry instruction. All 
sessions were held during the school day but outside of their regular mathematics class. Students 
received a graphing calculator for their participation.  

The exploratory teaching experiment (Steffe & Thompson, 2000) consisted of 14 sessions, 
held twice a week with each session lasting between 28 and 38 minutes. All sessions were taught by 
the first author, who is identified as the teacher-researcher (TR) in this article. The use of a researcher 
as the teacher is consistent with teaching experiment methodology (e.g., Cobb & Steffe, 1983; Steffe 
& Thompson, 2000) and should not be confused with self-study methodology, wherein the researcher 
studies their own teaching in classrooms where they are the main instructor. Every session was video 
and audio recorded to ensure that students’ gestures, manipulation of physical objects, and voices 
during small-group discussions could be reviewed, with one audio and video recorder placed near each 
group. Additionally, all written work and students’ responses to journal prompts were collected during 
the sessions. For this study, audio/video recordings served as the primary data source; students’ 
written work and journal reflections were referenced as needed in order to provide a more complete 
picture of what occurred during the sessions. 

 
Teaching Experiment Design and Rationale 

 
Exploratory teaching experiment methodology is used to study students’ ways of 

understanding and operating with particular content in instances when testing the researchers’ 
hypotheses for learning may not be appropriate (Steffe & Thompson, 2000). In particular, this 
methodology was selected in order to better understand students’ ways of understanding proof while 
engaging in tasks that are not commonly found in traditional classrooms. The primary goal of the 
present study was to develop students’ understanding of the purpose of proof through their 
engagement in tasks that emphasized the proving process as a means of a) developing certainty that 
the given statement is always true and b) understanding why it is always true (de Villiers, 1990; Hanna 
& Jahnke, 1996). Specifically, we hypothesized that the explanatory feature of proofs could help 
students transition away from empirical arguments since examples on their own do not tend to explain 
why a statement is true. We chose to only use tasks involving general claims based on the hypothesis 
that they could facilitate student understanding that a proof must contain justifications that 
encompassed all objects within the claim’s domain, particularly when accompanied by conversations 
where the domain was an explicit object of focus.  
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The TR structured the instruction so that students developed their understanding of proof as 
they engaged in various reasoning-and-proving activities. The goal to engage students in authentic 
reasoning-and-proving has been used in a variety of intervention-based studies (e.g., G. J. Stylianides 
et al., 2017). For example, the present study’s use of general claims and having students prove their 
own conjectures was successfully used in a study with eighth graders (Boero et al., 1996). Finally, we 
incorporated statements about reasoning-and-proving (Otten, Gilbertson et al., 2014) into whole-class 
discussions and through the use of reflection prompts in order to focus students’ attention on specific 
aspects of proofs. Although hypotheses for learning were developed to guide the instruction, 
additional iterations of the teaching experiment would be needed in order to test and revise the 
instruction so that students’ ways of understanding aligned with the researcher’s hypotheses (or the 
hypotheses could be revised upon further iterations). During the sessions, the TR did not focus on 
the form of proofs, but instead allowed students to write arguments in a way that made sense to them.  

The primary tasks used in this study were developed before the start of the experiment based 
on the hypotheses described above. On the other hand, the time spent on each task and select sub-
tasks were devised during the study in response to where the TR interpreted students to be in their 
current understanding. For example, the original tessellation task, “do all quadrilaterals tessellate?” 
was pre-planned, but the follow-up task, “do all regular polygons tessellate?” was added mid-
experiment in an attempt to focus students’ attention on both the sides and angles of polygons. We 
describe the three focal tasks in the following sections; see Appendix A for a description and rationale 
for an overview of the entire instructional sequence.  
 
Overview of the Tessellation Tasks 
  

After reviewing the definition of quadrilaterals and introducing tessellations, the TR launched 
the tessellation task by posing the question, “Do all quadrilaterals tessellate?” Students were given six 
sets of different convex quadrilaterals to aid in their investigation. At the end of the session, the TR 
asked students to journal how confident they were that quadrilaterals always tessellate and to describe 
how they would explain their answer to a friend. In Session 2, students were asked to write a set of 
“step-by-step” directions for how to tessellate any quadrilateral. Each group was given some of the 
quadrilaterals from Session 1 as well as two concave and one convex quadrilaterals to use during the 
task. In Session 3, the TR introduced the next subtask by asking students if they knew of other 
polygons that they thought would always tessellate. After eliciting their ideas, the TR introduced 
regular polygons and referenced familiar examples. Next, the TR posed the question, “Do all regular 
polygons tessellate?” Regular polygons were selected because they fit within students’ directions for 
tessellating quadrilaterals, despite only some tessellating. In order to investigate this question, the TR 
first provided all groups with a set of regular hexagons and then passed out regular pentagons, 
septagons, and octagons (one per group) to “speed up” the process. The reflection prompts provided 
in Session 3 (see Appendix A) were used to encourage connections across the tasks and motivate a 
need to understand why quadrilaterals always tessellate. The term “counterexample” and the idea that 
only one counterexample was needed to disprove a general claim was introduced to students towards 
the end of Session 3. The TR concluded the tessellation task in Session 4 by summarizing the key ideas 
from the first three sessions and then explaining why quadrilaterals and regular hexagons, but not 
regular septagons or octagons, tessellate. 
 
Overview of the Constructing Quadrilateral Diagrams Task 
 
 Prior to launching the diagrams task, the TR briefly introduced students to conditional 
statements and demonstrated how they are used in the proving process by talking through an informal 
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proof of the conditional statement, “If a quadrilateral has 360°, then it will tessellate.”2 Afterwards, 
students worked in three small groups to draw diagrams for statements 1–3 during Session 7 and 
statements 4–6 during Session 8 (Table 1). Since they had not yet taken high school Geometry, the 
theorems were rephrased to exclude potentially unfamiliar terminology such as “congruent,” 
“consecutive angles,” and “supplementary.” At the end of each session, the whole class discussed 
specific features of the diagrams, including the different notation methods they had used.  
 
Table 1 
 
Statements Used in the Constructing Diagrams for Quadrilateral Theorems Task 
 

1. 

2. 
 

3. 

4. 

5. 

6. 

If the polygon is a rectangle, then the diagonals have the same length. 

If a quadrilateral is a parallelogram, then the measures of the angles on the same side of the shape add to 
180 degrees. 

If a quadrilateral is an isosceles trapezoid, then the diagonals have the same length. 

If two sides of a parallelogram that intersect have the same length, then the parallelogram is a rhombus. 

If the diagonals of a parallelogram form a 90-degree angle, then the parallelogram is a rhombus. 

If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle.  

 
Overview of the Proving Similar Polygon Conjectures Task 
 

The TR introduced the similar polygons task by asking students to pose conjectures of specific 
polygons that they thought might be similar (i.e., “all ____ are similar”). During the launch, they 
discussed the teacher-posed conjecture “all polygons are similar” to make sure that students 
understood the conjecture and remembered how to use a counterexample to disprove a conjecture. 
Students posed four conjectures that involved classes of polygons that were always similar to one 
another: squares, equilateral triangles, right triangles, and rhombuses. After constructing their 
argument for the conjecture “all squares are similar”, small groups exchanged papers and provided 
feedback to their peers. The TR posed the following questions to focus students’ feedback: “Is it 
convincing? Does it convince you that no matter what two squares I draw, they’re going to be similar? 
And is there anything someone could say to poke a hole in the argument?” Next, each group revised 
their own argument in response to the two sets of peer feedback they received. In Session 12, the TR 
led the entire class through the proof of the conjecture, “all squares are similar”, which built on 
elements that were in students’ arguments from the previous session. Afterwards, students 
investigated the classes’ conjectures for right triangles and equilateral triangles and then constructed 
an argument demonstrating that the conjecture was either true or false. Students investigated the final 
conjecture, “all rhombuses are similar”, during the final interview and then constructed an argument 
either proving or disproving it, depending on their belief in the conjecture’s validity.  
 
Analytic Process 

 
In addition to rooting our study in the literature previously described and explaining the 

relationship between the researchers and study participants, we now articulate our process in the data 
                                                       
2 This claim was stated by one of the students in an earlier session. We chose to use their phrasing in order to connect to 
the student’s earlier words instead of starting with a claim that was more mathematically precise. During the class 
discussion, the TR clarified that the hypothesis referred to the angles of a quadrilateral. 
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reduction and analysis process in order to make claims using qualitative research methodology (Noral 
& Talbert, 2011). We restricted our analysis of the data to sessions involving geometric tasks. There 
were five broad geometric tasks: the tessellation tasks (Sessions 1-4; 103 minutes), constructing 
diagrams task (Sessions 7-8; 68 minutes), constructing a definition for similar polygon conjectures task 
(Sessions 9–10; 62 minutes), proving similar polygon conjectures task (Sessions 11–12; 157 minutes3), 
and proving the exterior angle theorem task (Session 13; 34 minutes). The unit of analysis was a 
response (written and/or verbal) to one question or prompt (subtask) within the identified tasks. 
Specifically, units of analysis spanned the time between when student(s) started and completed each 
subtask in whatever grouping configuration they were placed. Most subtasks were completed in three 
small groups; however, six subtasks (four reflection and two math prompts) were completed 
individually. We excluded whole-class discussions in instances when they only reiterated students’ 
small group work so as not to double analyze reasoning-and-proving activity. Collectively, there were 
119 units to be analyzed. In this article, we present findings for the tessellation, constructing diagrams, 
and proving similar polygon conjectures tasks since they best illustrate the range of reasoning-and-
proving that occurred.  

To answer RQ1, we analyzed the session data using the qualitative research software 
MAXQDA to determine the opportunities students had to engage in reasoning-and-proving based on 
the launch and implementation of each task. In order to make comparisons between the types of 
reasoning-and-proving opportunities found in regular Geometry textbooks and the instruction used 
in this study, we adapted the expected student activity portion of Otten, Gilbertson et al.’s (2014) 
analytic framework, which was a modified version of Thompson and colleagues (2012)’s framework 
(see Table 2). 
 
Table 2 
 
Reasoning-and-Proving Student Activity Codes 
 

Related to Mathematical Claims  Related to Mathematical Arguments Emergent Codes 

● Make a conjecture, refine a 
statement or conjecture, or draw 
a conclusion 

● Fill in the blanks of a conjecture 
● Investigate a conjecture or 

statement 

● Construct a proof  
● Develop a rationale or non-

proof argument 
● Evaluate an argument/proof 
● Find a counterexample 

● Make sense of a 
mathematical claim 

● Construct a diagram 
● Revise an 

argument/proof 

 
Note. The codes in the first two columns are from the framework described by Otten, Gilbertson et al. (2014). 
 

We adapted Otten, Gilberston et al.’s (2014) framework such that it applied to both the 
anticipated reasoning-and-proving activity and the reasoning-and-proving students actively engaged 
in during the sessions. For example, in the exchange below during the proving similar polygons task, 
both students’ comments were coded as develop a rationale or non-proof argument. Additionally, the entire 
exchange was included within a broader evaluate an argument/proof code to capture the broader 
reasoning-and-proving activity being completed.  

                                                       
3 Students individually completed the final prompt of this task during the final interview; this accounted for 93 of the 157 
minutes.   
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Wilson: I don’t think [the angles] should be [labeled] A, B, C, D, I think it should be 
A, A, A, A cause they’re all the same angle 

Megan: and then they need those [notation] on the edges [sides] of the square to 
show that it’s the same length cause that’s what makes it a square. 
 

Develop a rationale or non-proof argument was used in instances when students provided a 
justification for a single statement (“because…”) and in instances when students were asked to 
“explain” or provide a justification for “why” a claim is true. In contrast, construct a proof was used in 
instances when the task directly asked students to prove a mathematical claim. Note that the presence 
of this code did not guarantee that the resulting product contained all of the required elements to be 
considered a proof. During the coding process, we identified additional instances of reasoning-and-
proving that occurred in the sessions but were not captured by Otten, Gilbertson et al.’s (2014) codes. 
This resulted in three additional codes: make sense of a mathematical claim, construct a diagram for a 
mathematical statement4, and revise an argument/proof. Make sense of a mathematical claim was used in instances 
when students talked about a claim without trying to determine whether it was valid (the latter would 
be coded investigate a conjecture or statement). For example, Arin’s second statement below, which occurred 
during the constructing diagrams for quadrilateral theorems task, was coded make sense of a mathematical 
claim because she was not trying to actively determine if the claim was true. 

Arin: (reading) “If a quadrilateral is a parallelogram” is that the like one that’s straight 
lines and then it like (makes a slanted line gesture with her hands) 

Sadie: Yeah 
Arin: Okay. (reading) “then the measures of the angles on the same side of the shape 

add to 180.” Yeah, because one angle is going to be bigger than the other. 
 

Instances when students discussed mathematical vocabulary, such as Arin’s first sentence, were not 
coded as make sense of a mathematical claim because it was activity outside of the reasoning-and-proving 
process. Finally, the code revise an argument referred to instances when students revised their draft 
argument in response to peer feedback. To increase trustworthiness (Lincoln & Guba, 1985), the 
authors had continual calibration conversations with one another and also produced preliminary 
analytic memos that were vetted by an outside observer. 

To answer RQ2, we first analyzed students’ discussions during each task in order to assess 
how, if at all, students were attending to the domain of the claims. Although it is not possible to 
ascertain what students were internally attending to at a particular moment in time, we could look for 
evidence of shifts in attention through what they said or did in their conversations with peers (Barwell, 
2002, as cited in Ingram, 2014). Examples of students demonstrating attention to the domain of the 
claim include a student responding to a peer’s assertion by saying, “no that’s not true for all of them”. 
Next, we analyzed students’ written work for evidence of attention to the domain of the claims. 
Specifically, we determined whether students’ justifications, constructed diagrams, and notation 
methods encompassed all cases within the claim’s domain. Although we coded students’ written work 
as indicating attention to the domain of the claim, or a lack thereof, we recognize the possibility that 
a student could construct a general argument or notate their diagram with variables for reasons other 
than their understanding of the claim’s domain. Additionally, it is possible that a student could 

                                                       
4 Constructing a diagram could have been coded using the “modify or revise a mathematical statement” code since students 
were adding a diagram to accompany the provided statements. However, a new code was added to emphasize the fact that 
textbooks and teachers rarely, if ever, hold students responsible for producing a diagram for a proof task (Cirillo, 2018; 
Herbst & Brach, 2006). 
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recognize the domain of the claim but produce an argument that only refers to a finite number of 
cases. 

After coding for individual instances of attention to the domain of claims, we then looked 
across the coded data for evidence of shifts in attention (Mason & Davis, 1988). For example, if a 
group of students initially labeled their diagram with specific angle or side measurements in one 
instance, but later labeled them with variables, this would indicate a shift in attention to the fact that 
the mathematical claim being represented by the diagram refers to an infinite class of quadrilaterals. 
All instances where the students’ attention to the domain of the claim was unclear were discussed with 
an outside observer; in these instances, we include possible alternate interpretations in the results. 
 

Findings 
 

We describe students’ engagement in three general claim tasks in terms of the reasoning-and-
proving opportunities that surfaced during the tasks. We then share students’ interpretation of and 
attention to the domain of each mathematical claim. The findings are structured by task in order to 
(1) highlight the range of reasoning-and-proving afforded within a single task, and (2) acknowledge 
that the mathematical content of the task (Dawkins & Karunakaran, 2016), other features of the task, 
and its location in the instructional sequence may have influenced students’ attention to the domain 
of the claims. Across the three tasks, students engaged in all of the reasoning-and-proving 
opportunities set forth in the launch of the tasks as well as additional, unplanned reasoning-and-
proving that arose during small-group and whole-class conversations. Although students 
demonstrated limited attention to the domain of the claims at the beginning of the tessellation task 
and constructing diagrams task, there were small shifts in attention by the end of both tasks. In 
contrast, during the proving similar polygon conjectures task, students attended to the domain of the 
claims throughout their conversations and through their written justifications. However, some 
students attended to the domain of the claims in a way that did not encompass all possible cases during 
the rhombus portion of the similar polygons task. 
 
Tessellation Tasks 
 
Varied Reasoning-and-Proving Opportunities 
 

The tessellation tasks, as launched by the teacher-researcher (TR), provided students with 
opportunities to investigate the validity of mathematical statements, construct a counterexample, and 
develop non-proof rationales for their assertions. Specifically, Session 1’s subtask (“do all 
quadrilaterals tessellate?”) resulted in non-proof rationales as students investigated how to tessellate 
different quadrilaterals in their small groups (Figure 1) and again as they individually summarized their 
responses in their notebooks. In Session 2, the subtask to create “how to” directions for tessellating 
any quadrilateral did not explicitly provide opportunities for students to engage in reasoning-and-
proving, but did encourage greater attention to the domain of the mathematical claims.  
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Figure 1 
 
Two Students Tessellating Different Irregular Convex Quadrilaterals in Session 1. 
 

 
Session 3 involved two subtasks; the first, “do all regular polygons tessellate?”, allowed 

students to investigate a conjecture and find a counterexample. The second subtask (“Do you still 
think that all quadrilaterals tessellate? If no, explain why. If yes, is there something special about 
quadrilaterals that make it so that they will always tessellate?”) provided opportunities for non-proof 
rationales. In addition to engaging in all of the intended reasoning-and-proving activity, students also 
made conjectures, posed counterexamples in response to a peer’s conjecture, and refined a peer’s 
conjecture. The additional reasoning-and-proving activities occurred in Session 3 while students 
discussed as a whole class the possible characteristics of polygons that tessellate. 

While investigating the validity of the claim (“do all quadrilaterals tessellate?”), students’ non-
proof rationales in their written reflections at the end of Session 1 referenced the different cases that 
had successfully tessellated and an assumption that the pattern would continue to hold true for other 
cases. For example, Sadie wrote, “I’m very confident that all quadrilaterals tessellate. Since we tested 
out many different shapes and they all worked, it helps prove my point. I would convince [a friend] 
by showing them how I found out that they all fit.” Similarly, Amanda wrote, “all quadrilaterals 
tessellate because if you match up one side of the quadrilateral, the other sides will have to match up 
too.” Across students’ written work at the end of Session 1, nine students included non-proof 
rationales to justify why they thought all quadrilaterals tessellate. 
 The final subtask around why all quadrilaterals, but not all regular polygons, tessellate 
produced the most varied opportunities for reasoning-and-proving, including activities that were not 
requested in the original prompt. After writing down their justifications, students discussed in small 
groups and then as a whole class possible reasons why only some polygons tessellate. The dialogue 
below occurred during the whole-class conversation. 

Amanda: I said that maybe after a shape gets like, like after they have four sides, like 
five and on, then maybe the angles become too wide, because they have too 
many sides 

TR: Okay. What do y’all think about that? 
Wilson: Well, hexagons work, but… 
TR: So hexagons work… Lexi, can you speak up a little bit?  
Lexi: Okay, well I said maybe. (Arin quietly interrupts her) 
TR: Go ahead [Lexi] and say what you were thinking. 
Lexi: Okay, well I said maybe like after four sides the sides have to be even with the 

amount, cause five didn’t work. 
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TR: Five didn’t work, yeah; so that would be a reason for that…but what, hold on, 
will you talk a little bit louder? 

Arin: The octagon didn’t work. 
 
In this exchange, Amanda and Lexi posed conjectures that described features of polygons they thought 
would tessellate (or not) and Wilson and Arin responded to each claim with a counterexample the 
class had previously investigated. The fact that hexagons tessellate was a counterexample to Amanda’s 
idea that polygons with more than four sides could not tessellate, and octagons failing to tessellate was 
a counterexample to Lexi’s idea that even-sided polygons might tessellate. The discussion is notable 
given that students had not yet been formally introduced to the use of counterexamples in the proving 
process or the idea of revising a claim. Instead, the additional unplanned reasoning-and-proving 
activity surfaced as students discussed two general claims (do all quadrilaterals tessellate? And do all 
regular polygons tessellate?) that were similar in structure but differed in validity. Through the use of 
two such general claim tasks, students were not only able to investigate the validity of the claims and 
provide non-proof rationales, but were also able to pose conjectures and counterexamples by looking 
across the two tasks. 
 
Increased Attention to the Domain of the Claim 
 

Throughout Session 1, students’ justifications relied on a lack of counterexamples rather than 
the identification of specific features of all quadrilaterals that result in them tessellating. Thus, there 
was little explicit attention on the domain of the claim. Students’ attention to the domain of the claim 
increased during Session 2 as they developed a series of “how to” directions for tessellating any 
quadrilateral. For example, Megan and Arin’s written directions stated: “1st we put opposite angles 
together. 2nd we repeated the first step as well as flipped and mirroring the shapes from the original 
two shapes. Same side length, different angles”. These directions represent a shift in attention from 
haphazardly moving copies of a quadrilateral around until they “fit” to purposefully placing the 
quadrilaterals together by focusing on the sides and angles. When describing how to tessellate any 
quadrilateral, Megan and Arin referred to generic sides and angles and did not mention more specific 
features that some, but not all, quadrilaterals contain (such as 90 angles or congruent sides). The 
reference to generic features of quadrilaterals may have been a result of the task prompt to create step-
by-step directions for how to tessellate any quadrilateral rather than a change in how students were 
interpreting the different provided examples, but regardless, the shift in attention was noteworthy. 

Small-group conversations in Session 3 revealed students’ varying attention to the domain of 
the claim. For example, Clay suggested they put two quadrilaterals together so that they make a nicer 
shape such as a rectangle or square, and Heather responded by saying, “that’s just for this shape, it’s 
not for all of them. Like different quadrilaterals make different shapes, not just a square.” Although 
Clay appeared to be focusing on features of certain quadrilaterals, Heather’s response suggests that 
she was considering multiple quadrilaterals when thinking about how to place the two copies together 
to form a tessellation. In the whole-class discussion around features of polygons that determine 
whether they will tessellate in Session 3, both Amanda and Lexi’s justifications referenced general 
features of polygons (the number of sides and angles) rather than specific characteristics. Students’ 
increased use of statements that applied to multiple if not all quadrilaterals in Sessions 2 and 3 suggest 
at least some attention to the domain of the claims. Given the explicit emphasis on all or any when 
launching the subtasks, it is possible that students’ use of these words in their conversations reflected 
the instructional focus rather than how they were mentally thinking about the claims (Mason, 2004). 
Nonetheless, students’ written work and conversations revealed moments where at least some 
students appeared to be considering multiple, if not all possible cases. 
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Constructing Diagrams for Quadrilateral Theorems Task 
 
Limited Reasoning-and-Proving Opportunities 

 
The constructing diagrams task, as launched by the TR, provided students with the 

opportunity to construct a diagram for six quadrilateral theorems (see Table 1 for task directions and 
Figures 2–4 for examples of student-constructed diagrams). In addition to engaging in the intended 
reasoning-and-proving activities, students also informally drew conclusions and made sense of the 
mathematical claims. For example, the three small groups’ diagrams for the theorem, “if one angle of 
a parallelogram is a right angle, then the parallelogram is a rectangle” are shown in Figure 2. 

As students constructed the diagrams, some began informally drawing conclusions from the 
hypotheses by applying their prior knowledge of quadrilaterals. While constructing the left diagram in 
Figure 2, Wilson argued that all of the angles had to be 90 degrees based on the given information. 
“This one has to be 90 degrees since...they’re all 90 degrees, yeah. Because these (adjacent angles) have 
to add to 180 and if one of them is 90 degrees, the other has to be 90 degrees.” Even though the task 
did not ask students to construct proofs for the given theorems, it allowed the opportunity for students 
to begin informally reasoning about the theorem and verbally begin to draft a rough outline for a 
mathematical argument. 
 
Figure 2 
 
The Three Small Groups’ Diagrams for the Theorem, “If One Angle of a Parallelogram is a Right Angle, then the 
Parallelogram is a Rectangle.” 
   

Note. The legend in the middle diagram reads, blue (vertical sides) = “parallel/congruent”; orange (horizontal 
sides) = “parallel/congruent”; pink (angles) = 90° angles. 
 

In addition to opportunities to construct diagrams and informally draw conclusions, the task 
also provided opportunities for students to make sense of each claim. This was especially true for the 
last three theorems in the task (Table 1), since the theorems referenced a different quadrilateral in the 
hypothesis and the conclusion. When constructing a diagram for the theorem, “if one angle of a 
parallelogram is a right angle, then the parallelogram is a rectangle”, Arin, Sadie, and Brian initially 
constructed the figure by drawing a right angle and then a slanted line “because parallelograms have 
slant.” As a result of only attending to the information in the hypotheses, their diagram resulted in a 
right trapezoid rather than a rectangle. Through a discussion with the TR, the students were able to 
connect their understanding of the definition of a parallelogram to recognize that they could construct 
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a rectangle to satisfy both the theorem’s hypotheses and conclusion. While the constructing diagrams 
task afforded more limited opportunities for reasoning-and-proving, the use of general claims for the 
task required students to make sense of the claims and afforded opportunities to informally draw 
conclusions from the hypotheses. Although often overlooked, reasoning about the claim itself can lay 
an important foundation to support students in the proof construction process (Cirillo & Herbst, 
2011). 
 
Attention to the Domains of the Claims in Relation to Diagrams 

 
Since students were asked to use their own notation methods, this aspect of the diagrams 

provided insights into how they were attending to the domain of the claims. Of the nine diagrams 
students constructed in Session 7, four of them suggested that students paid limited attention to the 
domain of the claims either in the type of quadrilateral they drew, or in their selected notation method. 
In contrast, only one of the nine diagrams constructed in Session 8 contained specific notation that 
did not encompass all objects within its domain. For instance, Lauren, Megan, and Wilson first labeled 
the angles of their parallelogram 100º and 80º when constructing a diagram for the statement, “If a 
quadrilateral is a parallelogram, then the measures of the angles on the same side of the shape add to 
180 degrees.” When asked if those were the only angle measurements for a parallelogram, Wilson 
replied, “I don’t know, those probably don’t even, they add to 180 I know that, but those probably 
aren’t the exact measurements you know.” Even though this group originally labeled their angles with 
specific measurements, Wilson’s justification suggests that he had chosen the angle measurements 
arbitrarily and had not based them on the actual measurements in their diagram. As a result of the 
TR’s question, Megan proposed changing the labels to “A, A, B, B” and Wilson suggested adding the 
equation “A + B = 180” (Figure 3). Note that their small-group conversation did not reveal any 
evidence that they intended their diagram to be a rhombus instead of a parallelogram (Wilson: “just 
draw a parallelogram…just one that looks nice.”). At the end of Session 7, both Megan and Wilson 
stated during the whole-class conversation that they preferred the use of variables to notate the sides 
of the rectangle because variables were “more generic.”  
 
Figure 3 
 
Lauren, Megan, and Wilson’s Revised Diagram for the Theorem, “If a Quadrilateral is a Parallelogram, then the 
Measures of the Angles on the Same Side of the Shape Add to 180 Degrees.” 
 

 
 

Arin, Brian, and Sadie’s diagram for the same statement consisted of a general parallelogram; 
however, their decision to label the angles as “acute” and “obtuse”, omitting right angles, made the 
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notation less general than the prior group’s use of variables (Figure 4). After being asked if the specific 
angles of parallelograms would always be acute and obtuse as they had labeled them, Arin replied “no, 
it could change. Like if the lines were drawn [in the opposite direction], then this [acute] angle would 
be obtuse.” In response to this exchange, Sadie drew a second, smaller diagram containing different 
angle labels (Figure 4). Although the constructed parallelogram is generic, their choice to label the 
angles as obtuse or acute could result in a corresponding mathematical argument that makes 
assumptions about the angles that are not true for all cases (e.g., the upper left angle is acute). Sadie’s 
decision highlights one of the challenges of constructing diagrams for general statements: namely, that 
it is impossible to construct a diagram that has the features of all possible shapes.  

At the beginning of the constructing diagrams task, there was limited evidence that students 
were attending to the domain of the claims. However, their attention to the domain of the claim 
increased after the TR questioned groups whether their diagram applied to all possible shapes. At the 
end of Session 8, students appeared to have a greater awareness of the different ways that diagrams 
could be drawn to represent general claims. In a written reflection, Amanda explained that “it is okay 
that the diagrams didn’t look the same because not all shapes may look the same, but they still fit the 
requirements to be that shape.” Amanda and others recognized that diagrams can vary in their 
appearance so long as they contain all of the features specific to the shape mentioned in the general 
claim. Students’ use of their own notation methods when labeling diagrams for general claims allowed 
for greater insight into their attention to the generality of the claims and highlighted the challenge 
students can face in constructing a single diagram to represent a class of objects. 
 
Figure 4 
 
Arin, Sadie, and Brian’s Diagram for the Theorem, “If a Quadrilateral is a Parallelogram, then the Measures of the 
Angles on the Same Side of the Shape Add to 180 Degrees.” 
 

 
 
Proving Similar Polygon Conjectures Task 
 
Varied Opportunities for Reasoning-and-Proving 

 
The proving similar polygon conjectures task, as set up by the TR in Session 11, provided 

opportunities for students to pose conjectures about certain polygons that might be similar (e.g., “all 
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squares are similar”), investigate the validity of their conjectures, either construct a proof or find a 
counterexample, construct a diagram to accompany their argument, evaluate their peers’ arguments, 
and revise their argument based on peer feedback. In addition to engaging in all of the reasoning-and-
proving activities set forth in the task, some students also constructed non-proof rationales and posed 
a revised conjecture while evaluating their peers’ arguments.  

To illustrate the different reasoning-and-proving opportunities embedded within this task, we 
describe the original argument constructed by Group 1 (Arin, Brian, and Sadie), the feedback given to 
Group 1 by Group 2 (Megan, Wilson, and Lauren) and Group 3 (Clay, Amanda, Heather, and Lexi), 
and then the revisions Group 1 made to their argument in response to the provided feedback (see 
Appendix B for final work). Group 1 worked on the claim that all squares are similar. Group 1’s 
original argument included a diagram consisting of two different-sized squares with no notation on 
the sides and the angles labeled with the variables A, B, C, and D. Their written argument stated: “If 
all of the angles on a square are 90 degree angles, then they are the same. If all sides have the same 
measurements, then they will be proportional.” Note that each sentence in their argument addressed 
one component of the definition for similar polygons. However, they did not justify how they knew 
the sides would be proportional or explicitly mention the definition of similar polygons or squares. 

When evaluating the argument written by Group 1, Megan, Wilson, and Lauren focused on 
the way the group had chosen to label their diagram.  
 

Megan: I think that they should put…like, if they’re going to do like letters then there 
should be ones on the sides too because that’s, like, what makes it a square. 

Wilson: I think they should all be (unintelligible), I don’t think they should be A, B, C, 
D, I think it should be A, A, A, A cause they’re all the same angle. 

 
Notice that both Megan and Wilson provided a non-proof rationale (e.g., “they’re all the same angle”) 
to justify their proposed revisions. After a discussion with the TR, they concluded that the angles 
could be labeled with 90° instead of a variable. This groups’ final feedback included a revised diagram 
with the angles all labeled 90° along with the statement, “If the angles are the same, the side 
measurements will be proportional.” Their feedback assumed a relationship between congruent angles 
and proportional sides, however it had not yet been discussed how to demonstrate that the sides of 
squares were proportional for all cases. 

Clay, Amanda, Heather, and Lexi (Group 3) provided feedback by underlining Group 1’s use 
of the words “same” and “proportional” at the end of each sentence and then writing, “We’re not 
trying to prove that they are proportional, but that they are similar.” This critique suggests that they 
may not have recognized that each sentence in the original argument referred to one of the 
components of the definition for similar polygons. Nonetheless, it highlighted the need for Group 1 
to use more precise language in their original argument or to more clearly lay out the broad goals of 
their argument. During the revision process, Group 1 tweaked the first sentence to clarify that the 
angles are the same in response to Group 3’s feedback. They also revised their angle notation in the 
diagram and added labels to the sides of the two squares in response to Group 2’s feedback. 

In the proving similar polygons task, students had the opportunity to engage in a variety of 
reasoning-and-proving activities as they developed and honed their understanding of proof. Although 
none of the groups produced arguments that contained all of the elements and formatting of a 
traditional proof (which, after all, was not expected), their work on the task was notable given that this 
was their first formal experience constructing a proof. Students were actively involved in the decision-
making during this task, evaluated each other’s feedback, and decided whether they wanted to 
incorporate it into their revised argument. The directions within this task not only allowed students to 
experience varied reasoning-and-proving in a connected, authentic way, but also allowed students to 
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enact their role as a member of the proving community through revising their argument based on peer 
feedback.  
 
Attending to the Domain of the Claim in Varied and Complex Ways 
 

When proving that all squares are similar to one another, all three groups wrote arguments 
containing justifications that reflected an attention to the domain of the claim. Additionally, two of 
the three groups constructed a single diagram to accompany their argument that used variables to label 
the sides and, in one group, the angles as well. After completing their initial written argument, the 
remaining group (Heather, Amanda, Lexi, and Clay) chose to “draw another square”, which they 
labeled with specific side lengths, “to show that they all work”. It is not clear from this group’s 
discussion whether they saw the specific diagrams as part of their core mathematical argument or as 
further evidence to convince someone the claim was true. Finally, all three groups also demonstrated 
understanding that a single counterexample proved a general claim was false for the right triangle 
conjecture.  

Students’ arguments for the (false) claim that all rhombuses are similar revealed more variation 
in attention to the domain of the claims, in part because they were completed individually during the 
final interview instead of within their small groups. Six of the ten students demonstrated 
understanding of the domain of the claim, “all rhombuses are similar”, through their use of a single 
counterexample or class of counterexamples to prove the claim was false. Specifically, they argued the 
claim was false by giving a specific counterexample (Amanda, Lauren, and Sadie), mentioning that the 
angles of a rhombus “have no set rule” (Megan), or providing a class of counterexamples with squares 
and non-square rhombuses (Lexi and Wilson). For example, Wilson’s written argument is shown 
below: 
 

By definition a rhombus is a polygon that has 4 equal sides that the angles add up to 360°. 
By definition a square has 4 90 degree angles with sides that are equal. A rhombus doesn’t 
have to have 90° angles and a square does. Because of this 2 rhombuses don’t necessarily 
have to be similar.  

 
Wilson’s argument demonstrates understanding that in order for the claim to be true, it must be true 
for all possible cases even though he did not disprove the claim with just a single counterexample. 
Whether by providing a single counterexample, or a class of counterexamples, to prove the claim was 
false, the six students demonstrated attention to the fact that the claim must be true for all rhombuses 
in order to be considered true. 

The arguments produced by the remaining four students (Arin, Brian, Clay, and Heather), who 
initially thought the claim “all rhombuses are similar” was true, also demonstrated some attention to 
the domain of the claim. However, the way they conceived of the claim resulted in them considering 
only a subset of rhombuses. Arin, Brian, and Clay’s arguments assumed that the angle measurements 
would stay the same as the sides proportionally changed, while Heather only mentioned proportional 
side lengths (not equal angle measures) when stating the definition of similar polygons. In order to 
illustrate how Arin, Brian, and Clay were thinking about the claim, we focus on Arin’s argument, 
shown in Figure 5.  

Arin appropriately defined a rhombus and stated the definition of similar polygons, but 
incorrectly claimed, “When all of the side lengths will be the same, so will the angle measurements.” 
She verbally justified this claim saying, “if the shape’s proportional, then it’ll just… it’ll like make the, 
um, the shapes more bigger, but the angle measurements will stay the same because the shape isn’t 
changing its shape, it’s just changing its size.” This additional information suggests that she viewed 
one of the rhombuses as a dilation of the other. Instead of thinking about the conjecture as selecting 
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two arbitrary rhombuses and then determining if they were similar, she appeared to be thinking about 
the task as selecting one arbitrary rhombus and then dilating it to create the second rhombus. When 
asked whether rhombuses have particular angle measurements, Arin stated that the opposite angles 
“have to be the same, but other than that, they don’t have to be specific.” This reply further confirms 
our interpretation that her belief in the claim’s validity was based on her understanding of similarity 
and the domain of the conjecture. Of the four students who initially thought the claim was true, Arin, 
Brian, and Clay appeared to have at least a surface-level understanding of the definition of similar 
polygons (i.e., could state the definition), which suggests that their initial belief that the claim was true 
was not due to a lack of content knowledge. Instead, their initial assertion that rhombuses are all 
similar appeared to be rooted in how they were interpreting the domain of the mathematical claim, 
that is, how they brought to mind “all” rhombuses. Overall, students’ work on the similar rhombuses 
proof tasks highlighted the abstract level of thinking needed to fully grasp what it means to prove that  
a general claim is always true and raises the question of how to support students in developing such  
understanding. We next discuss some of these points. 
 
Figure 5 
 
Arin’s Written Argument for the Similar Rhombuses Proof Task 
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Discussion 
 

By examining the enactment of general claim proof tasks with respect to students’ 
opportunities to (1) engage in reasoning-and-proving activity and (2) consider the domain of the 
claims, this study extends Otten, Gilbertson et al.’s (2014) focus on the nature of mathematical 
statements found in reasoning-and-proving tasks in Geometry textbooks. With respect to the 
opportunities for reasoning-and-proving (RQ1), we found that the general proof tasks provided 
opportunities for students to actively engage in all of the intended reasoning-and-proving activities. 
Additionally, students also went beyond the intended activities by making conjectures/claims, posing 
counterexamples in response to a peer’s claim, and refining a peer’s conjecture during the tessellation 
tasks; drawing conclusions and making sense of the claims during the constructing diagrams task; and 
providing non-proof rationales and revising a conjecture during the proving similar polygons task. 
The tessellation task and proving similar polygons task in particular provided opportunities for 
students to engage in reasoning-and-proving in an integrated manner, mirroring the intent behind the 
hyphenated term (G. J. Stylianides, 2008). Across the three tasks, these students who were new to 
proof engaged in all of the reasoning-and-proving activity identified in Otten, Gilbertson et al.’s (2014) 
framework, including multiple opportunities to construct a proof. Consequently, these general proof 
tasks provided students with opportunities to develop their understanding of proof by engaging in the 
reasoning-and-proving process, something that Otten, Males, and Gilbertson (2014) noted was lacking 
within the introduction to proof chapters of many U.S. Geometry textbooks.  

Although not a focus of the present study, opportunities for additional, unplanned reasoning-
and-proving activity surfaced in part due to several factors, including the use of a launch-explore-
summarize lesson structure (e.g., Lampert, 2001; Stylianou, 2010), which engendered opportunities 
for students to make sense of the tasks in small groups before being given more formal instruction. 
There was also a sense of at least partially shared authority, with the expectation that students consider 
and respond to their peers’ ideas (e.g., the whole-class conversation in the tessellation task), rather 
than looking to the TR for validation. In the case of the tessellation tasks, the additional reasoning-
and-proving occurred as students worked to make sense of two general claims (“do all quadrilaterals 
tessellate?” and “do all regular polygons tessellate?”) that had parallel structure (i.e., both investigated 
whether a particular class of shapes would tessellate) but differed in validity. When considered 
together, the two claims motivated a need for a non-empirical justification that explained why only 
some polygons tessellate. The factors we have proposed that may have positively influenced students’ 
opportunities for reasoning-and-proving align with the idea that opportunities to learn extend beyond 
the specific tasks given to students. Other factors have also been found to be important, such as “the 
emphasis teachers place on different learning goals and different topics, […], the kinds of questions 
they ask and the responses they accept, [and] the nature of the discussions they lead” (Hiebert & 
Grouws, 2007, p. 379). Given that prior classroom studies have documented instances where teachers 
began by modeling the proof construction process and retained most of the mathematical authority 
(e.g., Harel & Rabin, 2010; Martin & McCrone, 2003; Otten et al., 2017), future studies could analyze 
specific instructional features that facilitate opportunities for students to engage in reasoning-and-
proving that extends beyond the opportunities within the original task. 
 Analysis of students’ attention to the domain of the claims during the three tasks (RQ2) 
highlighted the complexity of addressing generality and the different ways it impacts the reasoning-
and-proving process. Specifically, attempting to consider all possible cases when investigating the 
validity of the claim (tessellation tasks) required a different shift in attention than depicting the 
generality of a claim when constructing and notating a diagram (constructing diagrams task) or proving 
a claim to be true for all possible cases (proving similar polygons task). In all three cases, it seemed to 
be important that the claims themselves were general, as opposed to an introduction-to-proof unit 
that presents simple, particular proofs (e.g., “write down the justifications for how we know that this 
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segment of the given diagram is congruent to this other segment”). Although the general proof tasks 
afforded certain opportunities, as discussed above, they worked in concert with other factors such as 
the TR questions and the interactive dynamics. Moreover, the transfer of any attention to generality 
is not guaranteed, evidenced by the varied attention to generality during the similar rhombus task (final 
interview) despite everyone attending to generality during the similar squares task (Session 11).  

We also wish to comment on the attention to the domain of claims over time. Towards the 
end of the study, students’ work began reflecting an increased attention to the domain of the claims. 
We viewed this as a positive development as this was students’ first formal introduction to proving. 
Yet the attention to the domain near the end of the study was nuanced. Whereas all student work 
demonstrated at least some attention to the domain of the claims in the proving similar polygons task, 
some students interpreted the claims in a way that only encompassed a subset of cases (e.g., Arin’s 
argument in Figure 5). In the case of Arin, subsequent conversation suggested that her initial 
(incorrect) belief that all rhombuses were similar was not a result of a lack of content knowledge, but 
rather how she was thinking about the claim itself. Although Arin’s work does not discount the role 
that content knowledge and proof skills play in understanding why some students construct empirical 
arguments for general claims, it does reinforce the particular difficulties students face in interpreting 
diagrams as figural concepts (Fischbein, 1993) and the need to better understand how students 
interpret the domain of mathematical claims (Mason, 2019).  

Given this study’s small sample size involving accelerated students and the explicit emphasis 
placed on the domain of the claim by the TR, more research is needed to ascertain the extent to which 
a wider range of students recognize the domain of the claim while engaging in reasoning-and-proving 
tasks. It is possible that students’ prior successes in mathematics and their involvement in the 
accelerated mathematics program may be a form of selection bias contributing to the findings of 
additional, unplanned forms of reasoning-and-proving. That said, the accelerated program had only 
focused on algebraic topics at the time of the study, so the students’ content knowledge was likely not 
significantly different from other students at the school as they began studying secondary geometry. 
Future research should involve students who were taught using a more traditional curriculum where 
particular claims are frequently used (Otten, Gilbertson et al., 2014) and the domain of the claim is 
often obscured through the use of separate “given” and “to prove” statements (Chazan, 1993).  

How should we view students’ work on the three tasks, given that they were completed as 
they were first being introduced to proof? Viewing students’ work in the teaching experiment solely 
through the lens of the enacted opportunities to learn (RQ 1) paints a rosy but incomplete picture of 
their developed understanding of proof and ability to construct deductive arguments. On the one 
hand, there was evidence of careful attention to the generality of claims in nearly all of students’ 
constructed arguments during the proving similar polygon conjectures task and on proof tasks given 
in the final interview (Conner, K.A., 2018). On the other hand, findings on students’ attention to the 
domain of the claims (RQ 2) portrayed a more nuanced picture, in which students demonstrated 
attention to the domain of the claims in some instances, but not in others. In both the constructing 
diagrams task and proving similar polygons conjectures task, at least one group used specific numbers 
when labeling aspects of their diagram that can vary, even in instances when they explicitly referenced 
the domain of the claim in their language. One way to interpret students’ inconsistent shifts in 
attention is to conclude that they developed understanding of generality at a surface level (i.e., they 
recognized the types of justifications that were appropriate and the need to prove the claim for all 
possible cases), but had not fully become aware of other aspects of proof that are impacted by it. 
Nevertheless, for an introductory unit, the fact that general proof tasks helped set the stage for a focus 
on the domain of claims and students began to discuss those domains, even if imperfectly, it may be 
a sufficient foundation on which to build. As the field continues to explore ways to improve the 
teaching and learning of proof, more research is needed on ways to support shifts in attention with 
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regard to the level of generality indicated within a mathematical claim, and its impact in the reasoning-
and-proving process. 
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Appendix A 

Overview of the Instructional Sequence 
 
Session Classroom Activities Rationale for Tasks 

1 

“Do all quadrilaterals tessellate?” Allowed for testing of specific cases where the 
cases seem unique due to differences in the 
diagrams. The task proof allowed for 
explanations of why it was always true. 

2 

Create step-by-step directions that explain how 
to tessellate any quadrilateral. 

Aimed to facilitate systematic work and the 
identification of cross-cutting features of 
quadrilaterals that result in the figure 
tessellating. 

3 

“Do all regular polygons tessellate?”  
 
“Do you still think that all quadrilaterals 
tessellate? If no, explain why. If yes, is there 
something special about quadrilaterals that 
make it so that they will always tessellate?” 

First question served as a pivotal 
counterexample (Stylianides & Stylianides, 
2009) to cast doubt on their prior confidence 
that all quadrilaterals tessellate based on 
checking specific cases. The second question 
emphasized that a claim must be true for all 
cases and motivated the determination why a 
polygon will or will not tessellate.  

4 
Summary of first three sessions; TR explained 
why all quadrilaterals, but not all regular 
polygons, tessellate. 

Introduced the explanatory feature of proofs. 

5 
Circle and Spots problem and Monstrous 
Counterexample (Stylianides & Stylianides, 
2009)  

Aimed to cast doubt on the idea of using 
examples to determine whether a statement is 
always true. 

6 

Introduce generic examples through 
exploration of a number trick: 
https://nrich.maths.org/2280. Next, students 
explored and proved: “9*11 equals 1 less 
than102, 3*5 equals 1 less than 42. Will this 
pattern always be the case?” 

Aimed to support students in interpreting and 
using geometric diagrams where they only 
attended to the features that extended across 
all cases within the domain. The second task 
aimed to facilitate interpretation and use of 
variables as varying quantities.  

7 Students constructed diagrams for six 
quadrilateral theorems 

Introduced conditional statements, notation 
methods, and what can/cannot be assumed 
true based on a geometric diagram. 8 

9 Develop definition of similar polygons; based 
on sequence in Kobiela and Lehrer (2015) 

Established necessary mathematical content 
knowledge for Sessions 11 and 12. 

10 

11 
Students posed conjectures of the form “all 
___ are similar”, drafted an argument for 
squares, critiqued peer arguments, revised their 

Developed understanding of proof by 
engaging in multiple aspects of the reasoning-
and-proving process in small groups. The 

https://nrich.maths.org/2280
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12 
arguments, then discussed proof as a whole 
class. Next, students investigated remaining 
claims from previous sessions. 

second session was used to introduce specific 
characteristics of proofs.  

13 

Students individually engaged in the reasoning-
and-proving process (described in sessions 11-
12) for the exterior angle theorem. Task was 
posed using two examples, followed by the 
question “is this a coincidence?” 

Developed understanding of proof by 
engaging in the reasoning-and-proving process. 
Individual written work was used as a 
formative assessment. 

14 
Students developed shared criteria for features 
of “good proofs”; task based on Boyle and 
colleagues (2015). 

Assessed conceptions of proofs and reflected 
on key ideas from the teaching experiment. 
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Appendix B 

Brian, Arin, and Sadie’s (Group 1) revised argument for the conjecture, “all squares are similar”, 
including the feedback given by Group 2 (bottom) and Group 3 (top right).  

 

 


